
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
MIDTERM EXAMINATION

Instructors: Guy-Vincent Jourdan and Marcel Turcotte

March 2019, duration: 2 hours

Identification
Last name: First name:

Student #: Seat #: Signature: Section: A or B or C

Instructions
1. This is a closed book examination.
2. No calculators, electronic devices or other aids are permit-

ted.

(a) Any electronic device or tool must be shut off, stored
and out of reach.

(b) Anyone who fails to comply with these regulations
may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Write comments and assumptions to get partial marks.
5. Beware, poor hand-writing can affect grades.
6. Do not remove pages or the staple holding the examination

pages together.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result

1 10
2 5
3 20
4 15

Total 50

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.

March 2019 ITI 1121 Page 2 of 16

Directives
• For all the questions of this examination, with the exception of the classes Math and System, you

cannot use the Java libraries. Specifically, do not use Arrays and ArrayList. There should be no
import statements.

Question 1 (10 marks)
You must implement the class Product with the following characteristics.

• Has a class variable taxRate of type double. Its initial value is 0.13.

• Each Product has a description (of type String) and a price (of type double). Accordingly, the con-
structor has two parameters corresponding to these variables. Assume that the value of the parameter
price is positive.

• A class method setTaxRate, which sets taxRate to a new value. Assume that the value of the parameter
is between 0.0 and 1.0.

• An instance method getPriceWithTax returning the price of the product with the tax included.

• Product overrides the method equals from the class Object. Make sure that your method is as robust
as possible.

Implement the class Product in the space provided on the next page.

March 2019 ITI 1121 Page 3 of 16

Implement the class Product in the space below.

March 2019 ITI 1121 Page 4 of 16

March 2019 ITI 1121 Page 5 of 16

Question 2 (5 marks)
For this question, assume that you have been provided with valid implementations of the interfaces Queue
and Stack. On the next page, we refer to these implementations as QueueImplementation and StackImple-
mentation, respectively. You will find the interfaces Queue and Stack below.

p u b l i c i n t e r f a c e Queue<E> {

/∗ ∗
∗ R e t u r n s t r u e i f t h e queue i s c u r r e n t l y empty .
∗ @return t r u e i f t h e queue i s empty
∗ /

boolean i sEmpty () ;

/∗ ∗
∗ Adds t h e r e f e r e n c e elem a t t h e r e a r o f t h e queue .
∗ @param elem t h e r e f e r e n c e o f t h e new e l e m e n t
∗ /

void enqueue (E elem) ;

/∗ ∗
∗ Removes and r e t u r n s t h e f r o n t e l e m e n t o f t h e queue .
∗ @return t h e r e f e r e n c e o f t h e removed e l e m e n t
∗ /

E dequeue () ;

}

p u b l i c i n t e r f a c e Stack<E> {

/∗ ∗
∗ R e t u r n s t r u e i f t h e s t a c k i s c u r r e n t l y empty .
∗ @return t r u e i f t h e s t a c k i s empty
∗ /

boolean i sEmpty () ;

/∗ ∗
∗ Adds t h e r e f e r e n c e elem on to t h e t o p o f t h i s s t a c k .
∗ @param elem t h e r e f e r e n c e o f t h e new e l e m e n t
∗ /

void push (E elem) ;

/∗ ∗
∗ Removes and r e t u r n s t h e t o p e l e m e n t o f t h e s t a c k .
∗ @return t h e r e f e r e n c e o f t h e removed e l e m e n t
∗ /

E pop () ;

}

March 2019 ITI 1121 Page 6 of 16

Carefully analyze the source code below and give the output that will be printed.

p u b l i c c l a s s T e s t {

p u b l i c s t a t i c vo id t e s t Q u e u e () {

Queue<S t r i n g > q ;
q = new QueueImplementa t ion<S t r i n g > () ;

q . enqueue ("") ;

f o r (i n t i =0 ; i <7; i ++) {
S t r i n g elem ;
elem = q . dequeue () ;
System . o u t . p r i n t l n ("["+elem+"]") ;
q . enqueue (elem+"0") ;
q . enqueue (elem+"1") ;

}

}

p u b l i c s t a t i c vo id t e s t S t a c k () {

Stack<S t r i n g > s ;
s = new S t a c k I m p l e m e n t a t i o n<S t r i n g > () ;

s . push ("") ;

f o r (i n t i =0 ; i <7; i ++) {
S t r i n g elem ;
elem = s . pop () ;
System . o u t . p r i n t l n ("["+elem+"]") ;
s . push (elem+"0") ;
s . push (elem+"1") ;

}

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
System . o u t . p r i n t l n ("Calling testQueue() ::") ;
t e s t Q u e u e () ;
System . o u t . p r i n t l n ("Calling testStack() ::") ;
t e s t S t a c k () ;

}

}

Give your answer in the space provided on the next page.

March 2019 ITI 1121 Page 7 of 16

Give the output of the program Test.
> j a v a T e s t

March 2019 ITI 1121 Page 8 of 16

Question 3 (20 marks)
This question is about several classes all related to the interface Beepable. The UML diagram below shows
their relationships and characteristics.

+ beep()
«Beepable»

+ NoiseMaker(capacity: int)
+ addItem(item: Beepable)
+ makeNoise()

- items: Beepable[]
- numberOfItems: int

NoiseMaker
- horn: Horn

Car

- ringOnce()
Phone

+ honk()
Horn

• All Beepable objects have a method beep.
• Objects of the classes Car and Phone can be seen as Beepable.
• A Phone can beep by calling its method ringOnce(), which simply prints “ring!”.
• A Car can beep by calling the method honk() of its horn, which simply prints “honk!”.
• A NoiseMaker stores a maximum of n Beepable objects, where the value of n is passed as a parameter

to its constructor. Assume that the value of n will always be positive.
• The method addItem can be used to add a Beepable object to NoiseMaker. It displays a message “This

NoiseMaker is full” if the array is full and ignores that item. Furthermore, it displays the message, “null
is not a valid value” and ignores that item, if the value of the parameter is null.
• When the method makeNoise is called, NoiseMaker must ask all the Beepable objects to beep.

In particular, executing the following statements:

NoiseMaker m;
m = new NoiseMaker (5) ;

m. addI tem (new Phone ()) ;
m. addI tem (new Car ()) ;
m. addI tem (new Car ()) ;
m. addI tem (new Phone ()) ;
m. addI tem (new Phone ()) ;
m. addI tem (new Car ()) ;

m. makeNoise () ;

produces the following output:

This NoiseMaker is full
ring!
honk!
honk!
ring!
ring!

March 2019 ITI 1121 Page 9 of 16

A. Implement the interface Beepable.

B. Implement the class Car.

March 2019 ITI 1121 Page 10 of 16

Here is the class Horn.

p u b l i c c l a s s Horn {

p u b l i c vo id honk () {
System . o u t . p r i n t l n ("honk!") ;

}

}

C. Implement the class Phone.

March 2019 ITI 1121 Page 11 of 16

D. Implement the class NoiseMaker.

March 2019 ITI 1121 Page 12 of 16

Question 4 (15 marks)
For this question, you must provide an implementation of a class to represent a polynomial. A polynomial is
a formula of the form f(t) = 2.0+4.0× t2− t3. This particular polynomial is of degree 3 and its coefficients
are 2.0, 0.0, 4.0, and -1.0.

• Specifically, you must store the coefficients of the polynomial into an array.

• There are two constructors. One of them receives the reference of an array that contains the coefficients
to be used to initialize this polynomial. Assume this reference is not null. The second constructor
receives the degree of the polynomial only. Assume this degree is positive. With the second constructor,
all the coefficients are initially zero.

• There is a method set(int index, double value) that changes the value of the coefficient at the specified
index of the polynomial. Assume that the value of index is valid for this polynomial.

• The method get(int index) returns the coefficient at the specified index. Assume that the value of index
is valid for this polynomial.

• The method eval(double t) calculates the value of the polynomial for the value t. Evaluating the above
polynomial for the value 2.0 returns the value 10.0, which is 2.0+ 4.0× 2.02− 2.03. Hint: you can use
Math.pow(base,exponent) to help you with this calculation.

• The method toString returns a String representation of this polynomial with the format presented in
the example on the next page.

March 2019 ITI 1121 Page 13 of 16

Make sure that running the program below using your implementation produces the expected output.

p u b l i c c l a s s T e s t P o l y n o m i a l {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

P o l y n o m i a l f , g , h ;

double [] c o e f f i c i e n t s ;
c o e f f i c i e n t s = new double [] { 2 . 0 , 0 . 0 , 4 . 0 , −1.0} ;

f = new P o l y n o m i a l (c o e f f i c i e n t s) ;

c o e f f i c i e n t s [1] = 3 . 0 ;

g = new P o l y n o m i a l (c o e f f i c i e n t s) ;

h = new P o l y n o m i a l (1 2) ;

h . s e t (0 , 7 . 0) ;
h . s e t (2 , 4 . 0) ;
h . s e t (6 , −2 .0) ;
h . s e t (1 2 , 5 . 0) ;

System . o u t . p r i n t l n (f) ;
System . o u t . p r i n t l n (g) ;
System . o u t . p r i n t l n (h) ;

System . o u t . p r i n t l n (f . e v a l (2)) ;

}

}

Expected output:

2.0 + 4.0 * tˆ2 + (-1.0) * tˆ3
2.0 + 3.0 * tˆ1 + 4.0 * tˆ2 + (-1.0) * tˆ3
7.0 + 4.0 * tˆ2 + (-2.0) * tˆ6 + 5.0 * tˆ12
10.0

March 2019 ITI 1121 Page 14 of 16

p u b l i c c l a s s P o l y n o m i a l {

/ / I n s t a n c e v a r i a b l e (s)

/ / C o n s t r u c t o r s

p u b l i c P o l y n o m i a l (double [] c o e f f i c i e n t s) {

}

p u b l i c P o l y n o m i a l (i n t d e g r e e) {

}

/ / S e t t e r

p u b l i c vo id s e t (i n t index , double v a l u e) {

}

/ / G e t t e r

p u b l i c double g e t (i n t i n d e x) {

}

March 2019 ITI 1121 Page 15 of 16

/ / I n s t a n c e methods

p u b l i c double e v a l (double t) {

}

p u b l i c S t r i n g t o S t r i n g () {

}
}

March 2019 ITI 1121 (Blank Page)

