
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
MIDTERM EXAMINATION

Instructors: Guy-Vincent Jourdan and Marcel Turcotte

March 2018, duration: 2 hours

Identification
Last name: First name:

Student #: Seat #: Signature: Section: A or B or C

Instructions
1. This is a closed book examination.
2. No calculators, electronic devices or other aids are permit-

ted.

(a) Any electronic device or tool must be shut off, stored
and out of reach.

(b) Anyone who fails to comply with these regulations
may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.
6. Beware, poor hand-writing can affect grades.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result

1 35
2 15
3 15
4 5

Total 70

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.

March 2018 ITI 1121 Page 2 of 17

Question 1 (35 marks)
This question is about object-oriented programming in Java. Specifically, this is a small part of a software
system that you are developing for a supermarket chain. We are focussing on 2 types of goods, “books” and
“baskets of nuts”, and the part of the software system that computes the price of good and services after taxes
for all items sold by the chain, in every province.

«GoodsAndServices»
+ getPrice: double

+ toString: String

- weight : int
- nutsType : String
…

NutsBasket

+ equals : boolean
+ toString : String

- year : int
- title : String
- author : String
- price : double
…

Book

+ priceTaxesIncluded: double

+ ON : …
+ QC : …
…

TaxedPrice

In our software system, every object representing a good or a service, which includes objects of the classes
Book and NutsBasket, can be seen as a GoodsAndServices.

• A GoodsAndServices has a method called getPrice, which returns a double value that is the price of
that good or service before taxes.

• Book has 4 instance variables: the price before taxes of the book, of type double, the year of pub-
lication, of type int, and then two instances of String for the title and the author of the book. The
constructor of the class receives these 4 elements of information as parameters.

You need to also include three methods in Book: first, the instance method toString, which should
behave as shown in the example below. Second, the instance method equals. Two books should be
considered the same if they have the same title and author, and are published the same year. Finally,
for getPrice, the price before tax of a book has been received as a parameter to the constructor.

• NutsBasket has 2 instance variables, the nutsType, of type String, and the weight in grams, which is
an int. The constructor of the class receives these 2 elements of information as parameters. The class
will also need an implementation of the instance method toString. In the case of a NutsBasket, the
price before taxes is 0.1$ per gram.

The Java source code below shows the intended use of the classes and their methods.

March 2018 ITI 1121 Page 3 of 17

Book b1 , b2 , b3 ;

b1 = new Book (1 9 9 6 , "John Smith" , "Java for dummies" , 8 5 . 0) ;
b2 = new Book (1 9 9 6 , "John Smith" , "Java for dummies" , 4 0 . 0) ;
b3 = new Book (2 0 1 0 , "Jane Adam" , "Python for dummies" , 5 0 . 0) ;

System . o u t . p r i n t l n (b1) ;
System . o u t . p r i n t l n (b2) ;
System . o u t . p r i n t l n (b3) ;
System . o u t . p r i n t l n (b1 . e q u a l s (b2)) ;
System . o u t . p r i n t l n (b1 . e q u a l s (b3)) ;

N u t s B a s k e t n1 , n2 ;

n1 = new N u t s B a s k e t ("Pistachios" , 1 5 0) ;
n2 = new N u t s B a s k e t ("Almonds" , 4 0 0) ;

System . o u t . p r i n t l n (n1) ;
System . o u t . p r i n t l n (n2) ;

The execution of the above program should produce the following output on the console.

"Java for dummies" by John Smith, sold for 85.0$ plus taxes
"Java for dummies" by John Smith, sold for 40.0$ plus taxes
"Python for dummies" by Jane Adam, sold for 50.0$ plus taxes
true
false
basket of Pistachios costing 15.0$ plus taxes
basket of Almonds costing 40.0$ plus taxes

In the boxes next pages, you need to provide all the code necessary for this to work as described.

March 2018 ITI 1121 Page 4 of 17

March 2018 ITI 1121 Page 5 of 17

March 2018 ITI 1121 Page 6 of 17

March 2018 ITI 1121 Page 7 of 17

Lastly, you need to create a class TaxedPrice. This class is used to have the price of a good or service
with taxes included, in various provinces.

We will only support 2 provinces at the moment: in Ontario, goods and services are taxed at 13%, and in
Quebec, goods and services are taxed at 14,975%.

TaxedPrice has a class method priceTaxesIncluded that accepts two parameters, the good or service and
the province. It returns the price of the good or service, including the taxes for that province.

The Java source code below shows the intended use of that class.

Book b1 ;

b1 = new Book (1 9 9 6 ,"John Smith" ,"Java for dummies" , 8 5 . 0) ;

N u t s B a s k e t n1 ;

n1 = new N u t s B a s k e t ("Pistachios" , 1 5 0) ;

System . o u t . p r i n t l n ("With taxes: " + b1 + " costs "
+ T a x e d P r i c e . p r i c e T a x e s I n c l u d e d (b1 , T a x e d P r i c e .ON) + " in Ontario and "
+ T a x e d P r i c e . p r i c e T a x e s I n c l u d e d (b1 , T a x e d P r i c e .QC) + " in Quebec.") ;

System . o u t . p r i n t l n ("With taxes: " + n1 + " costs "
+ T a x e d P r i c e . p r i c e T a x e s I n c l u d e d (n1 , T a x e d P r i c e .ON) + " in Ontario and "
+ T a x e d P r i c e . p r i c e T a x e s I n c l u d e d (n1 , T a x e d P r i c e .QC) + " in Quebec.") ;

The execution of the above program should produce the following output on the console.

With taxes: "Java for dummies" by John Smith, sold for 85.0$ plus taxes
costs 96.05 in Ontario and 97.72875 in Quebec.

With taxes: basket of Pistachios costing 15.0$ plus taxes costs 16.95 in
Ontario and 17.24625 in Quebec.

In the box next page, provide the code for the class TaxedPrice.

March 2018 ITI 1121 Page 8 of 17

March 2018 ITI 1121 Page 9 of 17

Question 2 (15 marks)
In assignment 1, we introduced the concept of curve fitting through a linear regression. Smoothing is a
similar concept, which finds applications in statistics and image processing. Whereas curve fitting uses an
explicit function, smoothing gradually changes the values of a data set to remove noise and approximate some
unknown function. For the class Smoothing on the next page, implement the class methods printArray and
smooth.

• The method printArray receives the reference of an array of doubles as a parameter, and prints the
values of that array as shown in the example below.

• The method smooth also receives the reference of an array of doubles as a parameter, and “smoothes”
its value, which means that each value will be replaced by the average of the value before, the value
itself, and the value after in the array. The first value is replaced by the average of the first value and
the second value, and the last value is replaced by the average of the last value and the one before the
last. For instance, an array [2.0, 3.0, 1.0, 5.0] will be smoothed into [2.5, 2.0, 3.0, 3.0].

The Java source code below shows the intended use of the class.

double [] t e s t ;

t e s t = new double [] { 0 . 0 , 5 . 0 , 0 . 0 , 5 . 0 } ;
Smoothing . t e s t S m o o t h (t e s t) ;

t e s t = new double [] { 0 . 0 , 5 . 0 , 5 . 0 , 0 . 0 } ;
Smoothing . t e s t S m o o t h (t e s t) ;

t e s t = new double [] { 0 . 0 } ;
Smoothing . t e s t S m o o t h (t e s t) ;

t e s t = new double [] { 0 . 0 , 1 . 0 } ;
Smoothing . t e s t S m o o t h (t e s t) ;

t e s t = new double [] { 2 . 0 , 3 . 0 , 1 . 0 , 5 . 0 } ;
Smoothing . t e s t S m o o t h (t e s t) ;

t e s t = n u l l ;
Smoothing . t e s t S m o o t h (t e s t) ;

The execution of the above program should produce the following output on the console.

Running testSmooth on: [0.0, 5.0, 0.0, 5.0]
After smoothing: [2.5, 1.6666666666666667, 3.3333333333333335, 2.5]
Running testSmooth on: [0.0, 5.0, 5.0, 0.0]
After smoothing: [2.5, 3.3333333333333335, 3.3333333333333335, 2.5]
Running testSmooth on: [0.0]
After smoothing: [0.0]
Running testSmooth on: [0.0, 1.0]
After smoothing: [0.5, 0.5]
Running testSmooth on: [2.0, 3.0, 1.0, 5.0]
After smoothing: [2.5, 2.0, 3.0, 3.0]
Not a valid value, null, for the method testSmooth.

Complete the implementation of the class Smoothing on the next page.

March 2018 ITI 1121 Page 10 of 17

p u b l i c c l a s s Smoothing {

p r i v a t e s t a t i c vo id t e s t S m o o t h (double [] a) {
i f (a == n u l l) {

System . o u t . p r i n t l n ("Not a valid value, null, for the method testSmooth.") ;
re turn ;

}
System . o u t . p r i n t ("Running testSmooth on: ") ;
p r i n t A r r a y (a) ;
smooth (a) ;
System . o u t . p r i n t ("After smoothing: ") ;
p r i n t A r r a y (a) ;

}

p r i v a t e s t a t i c vo id p r i n t A r r a y (double [] a) {

}

March 2018 ITI 1121 Page 11 of 17

p r i v a t e s t a t i c vo id smooth (double [] a) {

}
}

March 2018 ITI 1121 Page 12 of 17

Question 3 (15 marks)
For the class StackInspector on the next page, complete the implementation of the method findLast(E elem).

• The method findLast returns the index of the last occurrence of the specified element in the stack. If
there is more than one occurrence, the last occurrence is the one closest to the bottom of the stack. This
is also the one with the highest index.

• The method returns -1 if the stack does not contain the element.

• The value of the index increases from top to bottom. The index of the top element is 0.

• The method findLast does not change the state of the stack. That is before and after a call to the
method, the stack must contain the same elements, in the same order.

• The value null is not a valid value for the parameter elem.

The example below illustrates the behaviour of the method findLast.
Stack<S t r i n g > s t a c k ;
s t a c k = new S t a c k I m p l e m e n t a t i o n<S t r i n g > () ;

s t a c k . push ("one") ;
s t a c k . push ("two") ;
s t a c k . push ("one") ;
s t a c k . push ("two") ;
s t a c k . push ("three") ;

S t a c k I n s p e c t o r <S t r i n g > i n s p e c t o r ;
i n s p e c t o r = new S t a c k I n s p e c t o r <S t r i n g >(s t a c k) ;

System . o u t . p r i n t l n (i n s p e c t o r . f i n d L a s t ("one")) ;
System . o u t . p r i n t l n (i n s p e c t o r . f i n d L a s t ("two")) ;
System . o u t . p r i n t l n (i n s p e c t o r . f i n d L a s t ("three")) ;
System . o u t . p r i n t l n (i n s p e c t o r . f i n d L a s t ("four")) ;

Executing the above Java code produces the following output on the console.

4
3
0
-1

For this question, there is class called StackImplementation that implements the interface Stack. An in-
stance of the class StackImplementation can store an arbitrarily large number of elements. You do not need
to write its implementation, it has been provided to you.

March 2018 ITI 1121 Page 13 of 17

p u b l i c c l a s s S t a c k I n s p e c t o r <E> {

p r i v a t e Stack<E> s t a c k ;

p u b l i c S t a c k I n s p e c t o r (S tack<E> s t a c k) {
t h i s . s t a c k = s t a c k ;

}

}

March 2018 ITI 1121 Page 14 of 17

/∗ ∗
∗ S t a c k A b s t r a c t Data Type . A S t a c k i s a l i n e a r da ta s t r u c t u r e f o l l o w i n g
∗ l a s t−in− f i r s t −o u t p r o t o c o l , i . e . t h e l a s t e l e m e n t t h a t has been added
∗ on to t h e S tack , i s t h e f i r s t one t o be removed .
∗ /

p u b l i c i n t e r f a c e Stack<E> {

/∗ ∗
∗ T e s t s i f t h i s S t a c k i s empty .
∗
∗ @return t r u e i f t h i s S t a c k i s empty ; and f a l s e o t h e r w i s e .
∗ /

boolean i sEmpty () ;

/∗ ∗
∗ R e t u r n s a r e f e r e n c e t o t h e t o p e l e m e n t ; does n o t change t h e s t a t e
∗ o f t h i s S t a c k .
∗
∗ @return The t o p e l e m e n t o f t h i s s t a c k w i t h o u t removing i t .
∗ /

E peek () ;

/∗ ∗
∗ Removes and r e t u r n s t h e e l e m e n t a t t h e t o p o f t h i s s t a c k .
∗
∗ @return The t o p e l e m e n t o f t h i s s t a c k .
∗ /

E pop () ;

/∗ ∗
∗ Put s an e l e m e n t on to t h e t o p o f t h i s s t a c k .
∗
∗ @param e l e m e n t t h e e l e m e n t be p u t on to t h e t o p o f t h i s s t a c k .
∗ /

void push (E e l e m e n t) ;

}

March 2018 ITI 1121 Page 15 of 17

Question 4 (5 marks)
You will find below an expression written in the postfix format. Using the algorithm seen in class, you need
to give the corresponding expression written in the infix format.

4 3 ∗ 7 6 − ∗ 2 4 + /

March 2018 ITI 1121 (blank space)

March 2018 ITI 1121 (blank space)

