
Introduction to Computing II (ITI 1121)
Midterm Examination

Instructor: Marcel Turcotte

March 2014, duration: 2 hours

Identification

Surname: Given name:

Student number: Section (A or B):

Instructions

1. This is a closed book examination.
2. No calculators, electronic devices or other aids are per-

mitted.

(a) Any electronic device or tool must be shut off,
stored and out of reach.

(b) Anyone who fails to comply with these regula-
tions may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Write comments and assumptions to get partial marks.
5. Do not remove the staple holding the examination

pages together.
6. Beware, poor hand writing can affect grades.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result

1 35

2 15

3 15

Total 65

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission

from the instructor.

March 2014 ITI 1121 Page 2 of 15

Question 1 (35 marks)

A recent study by the Government of Akalee showed that 42% of the country’s civil servants had
missed at least three business trips they were supposed to take over a period of one year. As a means
of dealing with this high level of disorganisation amongst its staff, your company was commissioned
with the task of implementing a business trip agenda for each and every state employee. The UML
diagram below gives you an overview of the application.

Trip

CarTrip

« interface »
Event

PlaneTrip

Agenda

Follow all the instructions below, and make sure to include constructors, as well as getters and setters
for all the attributes.

• Implement the interface Event. It declares two methods, getStart() and getEnd(), both
returning a value of type Date. (5 marks)

• Write the implementation of the abstract class Trip. It implements the characteristics that are
common to its sub-classes, here CarTrip and PlaneTrip. (8 marks)

– Trip implements the interface Event.

– All the trips have a start and end date, as well as a departure location and a destination.
Their initial values are passed to the constructor.

– Trip declares an abstract method called checklist, which checks whether all the conditions
for a trip are satisfied. If they are, it returns true. Otherwise, it returns false.

• Implement the class CarTrip (6 marks)

– CarTrip has a constructor which, in addition to the default parameters of Trip, also assigns
values to isFull (indicates whether or not the gas tank is full), breaksChecked (true or
false), and the number of passengers (an integer).

– CarTrip implements the method checklist. It returns true if the gas tank is full, the
breaks were checked, and the number of people traveling is 4 or less, which is the capacity
of the car.

• Implement the class PlaneTrip (6 marks)

– PlaneTrip has a constructor which, in addition to the default parameters of Trip, also
assigns values to ticketIssued (true or false), passportValid (true or false), num-
berCheckedLuggage (an integer), and numberCarryOn (an integer).

March 2014 ITI 1121 Page 3 of 15

– PlaneTrip implements the method checklist. It returns true if the ticket was issued, the
passport is valid, the number of checked items is two or less, and the number of carry-on
items is one or less.

• Implement the class Agenda. Similarly to Assignment #1 Question #2, Agenda uses a fixed-
size array to store elements. Give all the necessary class and instance variables, as well as a
constructor. For simplicity, herein, you will only implement one method, add. (10 marks)

– boolean add(Event e): adds an event to the agenda. Events are kept in increasing order
of start time. The method returns true if the event was added to the collection, and false
otherwise.

In your implementation, use the class java.util.Date to represent the start and end time of events.
This class implements the interface Comparable, which declares a method int compareTo(Date
other). In the example below, an object of the class DateFormat is used to create an object of the
class Date from a String representation.

Agenda agenda ;
Trip [] t r i p s ;
DateFormat df ;
Date s ta r t , end ;

agenda = new Agenda (1 0) ;

t r i p s = new Trip [4] ;

d f = DateFormat . getDateInstance (DateFormat .SHORT, Locale .CANADA) ;

s t a r t = df . parse ("09/03/2014") ; end = df . parse ("14/03/2014") ;
t r i p s [0] = new CarTrip (s ta r t , end , "Okola" , "Bulni" , true , true , 1) ;

s t a r t = df . parse ("22/11/2014") ; end = df . parse ("04/12/2014") ;
t r i p s [1] = new PlaneTrip (s ta r t , end , "Okola" , "Klappo" , true , false , 3 , 1) ;

s t a r t = df . parse ("15/06/2014") ; end = df . parse ("17/06/2014")
t r i p s [2] = new PlaneTrip (s ta r t , end , "Okola" , "Pilne" , true , true , 2 , 1) ;

s t a r t = df . parse ("05/02/2014") ; end = df . parse ("13/02/2014") ;
t r i p s [3] = new PlaneTrip (s ta r t , end , "Okola" , "Talba" , true , true , 1 , 1) ;

for (int i =0; i<t r i p s . l ength ; i++) {
i f (t r i p s [i] . checkL i s t ()) {

agenda . add (t r i p s [i]) ;
}

}

Following the execution of the above statements, the agenda contains three events, in the following
order, the PlaneTrip starting on 05/02/2014, followed by the CarTrip starting on 09/03/2014, followed
by the PlaneTrip starting on 15/06/2014.

March 2014 ITI 1121 Page 4 of 15

Event

March 2014 ITI 1121 Page 5 of 15

Trip

March 2014 ITI 1121 Page 6 of 15

CarTrip

March 2014 ITI 1121 Page 7 of 15

PlaneTrip

March 2014 ITI 1121 Page 8 of 15

Agenda

March 2014 ITI 1121 Page 9 of 15

Question 2 (15 marks)

For this question, you must implement the class (static) method boolean isSkipped(Stack s1,
Stack s2).

• The method isSkipped returns true if and only if the stacks designated by s1 and s2 contain the
same elements, in the same order, but with elements 2,4,6,. . . missing in s2. Given s1 designating
a stack containing the elements 1,2,3,4,5,6,7, where 7 is the top element, and s2 designating a
stack containing the elements 1,3,5,7, where 7 is the top element, isSkipped(s1, s2) returns
true.

• Both stacks, designated by s1 and s2, must remain unchanged following a call to the method
isSkipped. Specifically, given s1 and s2, two reference variables designating stacks, following
the call isSkipped(s1, s2), s1 contains the same elements, in the same order, as it did before
the call to isSkipped. Similarly, s2 contains the same elements, in the same order, as it did
before the call to isSkipped.

• You can assume that both, s1 and s2, will not be null.

• An empty stack is considered the skipped version of another empty stack.

• The parameters of the method isSkipped are of type Stack, which is an interface.

For this question, there is an interface named Stack:

public interface Stack {
public abstract void push (int item) ;
public abstract int pop () ;
public abstract boolean isEmpty () ;

}

• Notice that the parameter of the method push and the return value of the method pop are of
type int.

• Assume the existence of DynamicStack, which implements the interface Stack. It has one
constructor and its signature is DynamicStack().

• You cannot use arrays to store temporary data.

• You must use objects of the class DynamicStack() to store temporary data.

• You do not know anything about the implementation of DynamicStack. In particular, you do
not know if it uses an array or not.

• You can assume that DynamicStack can store an arbitrarily large number of elements.

Write your answer on the next page.

March 2014 ITI 1121 Page 10 of 15

public class Q2 {
public stat ic boolean i sSk ipped (Stack s1 , Stack s2) {

} // End o f i sSk i pped
} // End o f Q2

March 2014 ITI 1121 Page 11 of 15

Question 3 (15 marks)

A. True or False Questions (5 marks)

(a) The program below will print 19.
True or False.

public class Amount {
private int value = 0 ;

public int getValue () {
return value ;

}

public void setValue (int base) {
value = base ;

}

public void i n c r (int increment) {
value = value + increment ;

}
}
public class Test {

public stat ic void main (St r ing [] a rgs) {
Amount pocketMoney = new Amount () ;
pocketMoney . setValue (1 7) ;
pocketMoney . i n c r (5) ;
pocketMoney . va lue = pocketMoney . va lue − 3 ;
System . out . p r i n t l n (pocketMoney . getValue ()) ;

}
}

(b) The program below will print true.
True or False.

public class Test {
public stat ic void main (St r ing [] a rgs) {

I n t e g e r a , b ;
a = new I n t e g e r (3 5) ;
a++;
b = new I n t e g e r (3 6) ;
System . out . p r i n t l n (a != b) ;

}
}

(c) An instance variable cannot be used (referenced) in a class (static) method.
True or False.

March 2014 ITI 1121 Page 12 of 15

(d) In the class OlympicTime below, the statement super(h,m) could be omitted since Java
automatically adds that call in the constructor of a sub-class.
True or False.

(e) In the class OlympicTime below, “this” can be omitted in the two statements in which
it occurs.
True or False.

public class Time extends Object {
protected int hours ;
protected int minutes ;
public Time(int h , int m) {

hours = h ;
minutes = m;

}
}

public class OlympicTime extends Time {
private int seconds ;
private int m i l l i s e c o n d s ;
public OlympicTime (int h , int m, int v1 , int v2) {

super (h , m) ;
this . seconds = v1 ;
this . m i l l i s e c o n d s = v2 ;

}
}

March 2014 ITI 1121 Page 13 of 15

B. Multiple Choice Questions (6 marks)

(a) Which of the following statements is or are correct?

i. An interface can contain concrete methods, as long as it contains at least one abstract
method.

ii. An abstract class can be extended by several sub-classes.

iii. A class can implement several interfaces.

A. i

B. i and ii

C. i and iii

D. only iii

E. ii and iii

(b) What is the value of the following postfix expression? 5 2 − 6 × 3 1 − /

i. 0

ii. 9

iii. 2

iv. 11

v. not a well formed postfix expression

(c) Given a method having a formal parameter of type A, allows for the
type of the actual parameter for the call to be B, where B is a subclass of A.

• polymorphism

• inheritance

• method overloading

• generic types

• none of the above

March 2014 ITI 1121 Page 14 of 15

C. Following the guidelines presented in class, as well as the lecture notes, draw the memory di-
agrams for all the objects, the local variables, and parameter of the method Basket.main
following the execution of the statement “bskt2.items[1].setPrice(8);”. (4 marks).

public class Food {
private St r ing item = null ;
private double p r i c e = 0 . 0 ;

public Food (St r ing item , double p r i c e) {
this . item = item ;
this . p r i c e = p r i c e ;

}

public void s e t P r i c e (double p r i c e) {
this . p r i c e = p r i c e ;

}
}

public class Basket {
private Food [] i tems ;

public Basket () {
i tems = new Food [2] ;
i tems [0] = new Food ("Bread" , 4 . 0) ;
i tems [1] = new Food ("Chocolate" , 6 . 0) ;

}

public stat ic void main (St r ing [] a rgs) {
Basket bskt1 , bskt2 ;
bskt1 = new Basket () ;
bskt2 = bskt1 ;
bskt2 . i tems [1] . s e t P r i c e (8 . 0) ;
// here

}
}

March 2014 ITI 1121 Page 15 of 15

(blank space)

