
Introduction to Computer Science II (CSI 1101)
FINAL EXAMINATION

Instructor: Marcel Turcotte

April 2002, duration: 3 hours

Identification

Student number: section:

Student name: designated seat:

Instructions

1. This is a closed book examination.
2. No calculators or other aids are permitted.
3. Write your answers in the space provided. Use the backs of pages if necessary.

You may not hand in additional pages.
4. Write comments and assumptions to get partial marks.
5. Beware, poor hand writing can affect grades.
6. Do not remove the staple holding the examination pages together.

Marking scheme

Question Maximum Actual
1 6
2 3
3 3
4 14
5 14
6 12
7 6
8 10
9 12

10 6
11 10
12 4

Total 100

April 2002 CSI 1101 Page 2 of 24

Question 1 (6 marks)

Given the following binary sequence:
(1101)2

What decimal value does it represent for each of the following 3 interpretations:

a) as an unsigned number (positional system).

b) as a ONE’s complement number, encoded with 4 bits.

c) as a TWO’s complement number, encoded with 4 bits.

April 2002 CSI 1101 Page 3 of 24

Question 2 (3 marks)

Convert the following unsigned decimal number to binary.

(67.5625)10 = ()2

April 2002 CSI 1101 Page 4 of 24

Question 3 (3 marks)

Showing all the steps in your computation, multiply the following unsigned binary numbers. All inter-
mediary calculations must be carried out in binary.

1 0 1 1 0 1 0
× 1 1 0 1

April 2002 CSI 1101 Page 5 of 24

Question 4 (14 marks)

In this question there is:

• an interface called Queue:

public interface Queue {

public boolean isEmpty(); // returns true if the queue is empty

public void enqueue(Object object); // adds an object at the rear of the queue

public Object dequeue() // removes and returns the front object

throws java.util.NoSuchElementException;

}

• a class called Q that implements the interface Queue.

In the class Q, write an instance method to compare two Queue instances. To write this method you
can only use the (3) methods declared in the interface Queue. Two queues are equal if they contain
the same elements, in the same order. The two queues must not be changed by this method.

public class Q implements Queue {

// ...

public boolean equals(Object object) {

// answer:

April 2002 CSI 1101 Page 6 of 24

Question 4 (continued)

} // end of method equals

} // end of class Q

April 2002 CSI 1101 Page 7 of 24

Question 5 (14 marks)

Given the linked list implementation below, write a recursive instance method that compares two
lists. Two lists are equal if they contain the same elements, in the same order — two empty lists are
considered equal. Complete the method equals(Node p, Node q).

public class LinkedList {

private class Node {

public Object value;

public Node next;

public Node(Object value, Node next) {

this.value = value;

this.next = next;

}

}

private Node head;

public boolean equals(Object object) {

if (! (object instanceof List))

return false;

LinkedList other = (LinkedList) object;

return equals(head, other.head);

}

private boolean equals(Node p, Node q) {

// answer:

April 2002 CSI 1101 Page 8 of 24

Question 5 (continued)

} // end of the method equals

}

April 2002 CSI 1101 Page 9 of 24

Question 6 (12 marks)

Given the linked list implementation below, write an instance method that merges two ordered lists.
For example, if the method merge is called for the following list, l1:

l1 -> a -> d -> e -> null

with the list l2 as an argument:

l2 -> b -> d -> f -> h -> null

i.e. the following call is made:

l1.merge(l2);

then the list l1 is changed to:

l1 -> a -> b -> d -> d -> e -> f -> h -> null

but l2 remains unchanged:

l2 -> b -> d -> f -> h -> null

Elements of the lists are compared using the method public int compareTo(Object) from the
interface Comparable.

public class DoublyLinkedList implements OrderedList {

private class Node {

public Comparable value;

public Node previous;

public Node next;

public Node(Comparable value, Node previous, Node next) {

this.value = value;

this.previous = previous;

this.next = next;

}

}

private Node head;

private Node tail;

April 2002 CSI 1101 Page 10 of 24

Question 6 (continued)

public void merge(DoublyLinkedList l2) {

// answer:

} // end of the method merge

} // end of class DoublyLinkedList

April 2002 CSI 1101 Page 11 of 24

Question 7 (6 marks)

Here is a simple stack-based language to draw lines on a (10×10) two dimensional space . The operations
of the language are C and L:

C: duplicates the top of the stack. For example, if the stack contains:

8 <- top of the stack

5

3

the operation C changes the stack to be:

8 <- top of the stack

8

5

3

L: draws a line from (x1, y1) to (x2, y2). The coordinates are read from the stack. Once the line has
been drawn, the coordinates (x2, y2) are put back onto the stack. For example, given the following
stack,

8 <- top of the stack

2

3

1

5

3

the operation L draws a line from (1, 3) to (2, 8). After the execution of the operation, the stack
contains the following elements:

8 <- top of the stack

2

5

3

A class that implements these operations (an interpreter for this language) can be found on the next
page. It uses a class called Stack that implements the following methods:

int peek(); Looks at the element at the top of this stack without removing it from the stack.

int pop(); Removes and returns the element at the top of this stack.

int push(int element); Pushes an element onto the top of this stack.

April 2002 CSI 1101 Page 12 of 24

class S {

private Stack s;

public S() {

s = new Stack();

}

public void execute(String program) {

for (int i=0; i<program.length(); i++) {

char c = program.charAt(i);

if (Character.isDigit(c))

s.push(Character.digit(c,10));

else

switch (c) {

case ’L’:

L();

break;

case ’C’:

C();

break;

}

}

}

private void C() {

s.push(s.peek());

}

private void L() {

int y2 = s.pop();

int x2 = s.pop();

int y1 = s.pop();

int x1 = s.pop();

line(x1, y1, x2, y2);

s.push(x2);

s.push(y2);

}

public static void line(int x1, int y1, int x2, int y2) {

// draws a line from (x1,y1) to (x2,y2)

}

}

April 2002 CSI 1101 Page 13 of 24

0 5 10

0

5

10

x

y

Onto the above grid, draw the lines produced by the execution of the following sequence of operations:

1 C 7 4 L 2 7 L 5 C L

i.e., the result of executing the following statements:

S machine = new S();

machine.execute("1C74L27L5CL");

In the space below, show the content of the stack after each call to L.

April 2002 CSI 1101 Page 14 of 24

Question 7 (continued)

April 2002 CSI 1101 Page 15 of 24

Question 8 (10 marks)

In this question there is:

• an interface called Iterator,

public interface Iterator {

public boolean hasNext(); // Returns true if the iteration has more elements,

// i.e., returns true if next would return an element.

public Object next(); // Returns the next element in the iteration.

}

• a class called CircularQueue,

– that implements the methods enqueue(Object) and serve() (dequeue).
– the elements of the queue are Objects that are stored in a circular array.
– the empty queue is represented with front = -1 and rear = -1.

The class CircularQueue contains a partial implementation of the interface Iterator. Fill in the (5)
missing elements in the class CircularQueue on the next page.

The execution of the following statements:

CircularQueue q = new CircularQueue();

for (int i=0; i<4; i++)

q.enqueue("elem-" + i);

Iterator j = q.iterator();

while (j.hasNext())

System.out.print(" " + j.next());

should display:

elem-0 elem-1 elem-2 elem-3

April 2002 CSI 1101 Page 16 of 24

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
N
o
S
u
c
h
E
l
e
m
e
n
t
E
x
c
e
p
t
i
o
n
;

p
u
b
l
i
c

c
l
a
s
s

C
i
r
c
u
l
a
r
Q
u
e
u
e

{

p
r
i
v
a
t
e

s
t
a
t
i
c

f
i
n
a
l

i
n
t

M
A
X
_
Q
U
E
U
E
_
S
I
Z
E

=
4
;

p
r
i
v
a
t
e

O
b
j
e
c
t
[
]

q
;

p
r
i
v
a
t
e

i
n
t

f
r
o
n
t
,

r
e
a
r
;

p
u
b
l
i
c

C
i
r
c
u
l
a
r
Q
u
e
u
e

(
)
{

q
=

n
e
w

O
b
j
e
c
t
[
M
A
X
_
Q
U
E
U
E
_
S
I
Z
E
]
;

f
r
o
n
t

=
-
1
;

r
e
a
r

=
-
1
;

} p
u
b
l
i
c

v
o
i
d

e
n
q
u
e
u
e

(
O
b
j
e
c
t

o
)

{
i
f

(
f
r
o
n
t

=
=

-
1
)

{
f
r
o
n
t

=
0
;

} r
e
a
r

=
(
r
e
a
r

+
1
)

%
M
A
X
_
Q
U
E
U
E
_
S
I
Z
E
;

q
[
r
e
a
r
]

=
o
;

} p
u
b
l
i
c

O
b
j
e
c
t

s
e
r
v
e

(
)

{
i
f

(
f
r
o
n
t

=
=

-
1
)

t
h
r
o
w

n
e
w

N
o
S
u
c
h
E
l
e
m
e
n
t
E
x
c
e
p
t
i
o
n
(
)
;

O
b
j
e
c
t

r
e
t
u
r
n
V
a
l
u
e

=
q
[
f
r
o
n
t
]
;

i
f

(
f
r
o
n
t

=
=

r
e
a
r
)

{
f
r
o
n
t

=
-
1
;

r
e
a
r

=
-
1
;

}
e
l
s
e

{
f
r
o
n
t

=
(
f
r
o
n
t

+
1
)

%
M
A
X
_
Q
U
E
U
E
_
S
I
Z
E
;

} r
e
t
u
r
n

r
e
t
u
r
n
V
a
l
u
e
;

} /
/

c
o
n
t
i
n
u
e
s

o
v
e
r

t
h
e

n
e
x
t

c
o
l
u
m
n

p
u
b
l
i
c

I
t
e
r
a
t
o
r

i
t
e
r
a
t
o
r
(
)

{
r
e
t
u
r
n

n
e
w

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

;
} p
r
i
v
a
t
e

c
l
a
s
s

C
i
r
c
u
l
a
r
Q
u
e
u
e
I
t
e
r
a
t
o
r

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

{
p
u
b
l
i
c

i
n
t

c
u
r
r
e
n
t
;

p
u
b
l
i
c

C
i
r
c
u
l
a
r
Q
u
e
u
e
I
t
e
r
a
t
o
r
(
)

{
c
u
r
r
e
n
t

=
-
1
;

} p
u
b
l
i
c

O
b
j
e
c
t

n
e
x
t
(
)

{

i
f

(
c
u
r
r
e
n
t

=
=

r
e
a
r
)

t
h
r
o
w

n
e
w

N
o
S
u
c
h
E
l
e
m
e
n
t
E
x
c
e
p
t
i
o
n
(
)
;

i
f

(
c
u
r
r
e
n
t

=
=

-
1
)

{
c
u
r
r
e
n
t

=
f
r
o
n
t
;

}
e
l
s
e

c
u
r
r
e
n
t

=
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

;

r
e
t
u
r
n

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

;
} p
u
b
l
i
c

b
o
o
l
e
a
n

h
a
s
N
e
x
t
(
)

{
r
e
t
u
r
n

(
c
u
r
r
e
n
t

=
=

-
1

&
&
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

)
|
|

c
u
r
r
e
n
t

!
=

r
e
a
r
;

}
}

/
/

e
n
d

o
f

c
l
a
s
s

C
i
r
c
u
l
a
r
Q
u
e
u
e
I
t
e
r
a
t
o
r

}
e
n
d

o
f

c
l
a
s
s

C
i
r
c
u
l
a
r
Q
u
e
u
e

April 2002 CSI 1101 Page 17 of 24

Question 9 (12 marks)

In this question there is:

• an interface called Purchase:

public interface Purchase {

public double getPrice();

public boolean isTaxable();

}

• a class called Work, to represent works of art:

public class Work {

private String title;

private String author;

public Work(String author) {

this.author = author;

}

public String getAuthor() {

return author;

}

public void setTitle(String title) {

this.title = title;

}

public String getTitle() {

return title;

}

}

Write a class called Album such that:

• Album is a subclass of Work.
• Album implements the interface Purchase.
• An Album has a list of songs.
• Accordingly, the class has a method to add a new song to the list of songs and a method that

allows to retrieve the ith song (song at position i of the list of song).
• If the title of the Album has not been specified then the title corresponds to the title of the first

song.
• The price of an album is calculated from the price per song, which is a parameter passed to the

constructor of the class. For example, the price per song could be $2.10, with 9 songs in the
album, the total price would be $18.90.

Hint: use the class LinkedList or ArrayList to store the list of songs.

April 2002 CSI 1101 Page 18 of 24

Question 9 (continued)

April 2002 CSI 1101 Page 19 of 24

Question 10 (6 marks)

Convert the following Java program into the Assembly language for the toy computer, TC-1101, dis-
cussed in class. The mnemonics available are: CLA, INC, HLT, LDA, STA, ADD, SUB, DSP, JMP, JZ
and JN.

You do not have to give the Assembly language instructions that reserve storage for the variables —
you may assume this has already been done.

while (p > r) {

r = r + 2;

}

q = 1;

April 2002 CSI 1101 Page 20 of 24

Question 11 (10 marks)

A class called IntelligentGadget uses an instance of the class LightBulb to indicate its status (on or
off).

A LightBulb has a certain life time, which is modeled with an instance variable called life, which
is initialized to a random value (0..1000) when a new light bulb is created.

(a) Create a new exception type, subclass of Exception, and called WornOutLightBulbException.

(b) Modify the instance method on(), of the class LightBulb, so that if the number of times the
method on() has been called exceeds its life time then an exception of type WornOutLight-
BulbException will be thrown.

(c) Modify the instance method powerOn() so that it catches any exception of type WornOut-
LightBulbException and create a new LightBulb instance to replace the one that has just
worn out.

The class definitions can be found on the next page. Write your answers in the space below.

April 2002 CSI 1101 Page 21 of 24

public class IntelligentGadget {

private LightBulb indicator;

public IntelligentGadget {

indicator = new LightBulb();

}

public void powerOn() {

indicator.on();

}

public void powerOff() {

indicator.off();

}

}

public class LightBulb () {

private boolean on;

private int count;

private int life;

public LightBulb() {

on = false;

count = 0;

life = (int) (Math.random() * 1000.0);

}

public void on() {

count = count + 1;

on = true;

}

public void off() {

on = false;

}

}

April 2002 CSI 1101 Page 22 of 24

Question 12 (4 marks)

(a) Give the Canonical Product of Sum (CPOS) for the following truth table. Do not simplify your
answer.

A B C f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

f =

(b) Give the Boolean expression that corresponds to the following logic circuit:

f

x y

f =

April 2002 CSI 1101 Page 23 of 24

Appendix

Circuit symbols to be used for question 12 (b):

x
y x AND y

x
y x OR y

x not x

April 2002 CSI 1101 Page 24 of 24

(blank space)

