ITI 1121. Introduction to Computing Il

List: implementation

by
Marcel Turcotte

Version March 19, 2020

Preamble

Preamble

Overview

List: implementation

We focus on three implementations of the interface List using linked elements: the
singly-linked list, the doubly-linked list, and the doubly-linked circular list starting with a
dummy node.

General objective:

= This week, you will be able to design an industrial-grade implementation of the
abstract data type list.

Preamble

Learning objectives

Learning objectives

Explain the role of reference variables in the implementation of a linked list.

Modify the implementation of a singly or doubly linked list in order to add a new
method to it.

Justify the purpose of the dummy node in the implementation of a doubly linked
circular list.

Discuss the advantages and disadvantages, particularly in terms of execution time and
memory usage, for the three implementations of a list seen in this course, the singly
linked list, the doubly linked list, and the doubly linked circular list starting with a
dummy node.

Readings:

Pages 84-89, 103 of E. Koffman and P. Wolfgang.

Preamble

Plan

Preamble
Definitions
Implementations

Prologue

Definitions

A list (List) is an abstract data type (ADT) to store objects, such that each element has a
predecessor and a successor (thus linear, ordered), and having no data access
restrictions; one can inspect, insert or delete anywhere in the list. A.K.A. Sequence.

Implementations

= ArrayList
= LinkedList

> Singly linked list

= Doubly linked list

= List with a dummy node

» lterative processing (lterator)
= Recursive processing.

Singly linked list

= The simplest implementation is the singly linked list (SinglyLinkedList).
= We will use a “static” nested class to represent the nodes in the list. Each node
contains a value and is connected to its next one.

private static class Node<T> {
private T value;
private Node<T> next;
private Node(T value, Node<T> next) {
this.value = value;
this.next = next;

LinkedList

e NS NI NI

= We compare the efficiency of array-based (ArrayList) and linked-element-based
(LinkedList) implementations.

= We compare the efficiency of array-based (ArrayList) and linked-element-based
(LinkedList) implementations.

= Both can hold an unlimited number of objects, so ArrayList uses a dynamic array.

= We compare the efficiency of array-based (ArrayList) and linked-element-based
(LinkedList) implementations.

= Both can hold an unlimited number of objects, so ArrayList uses a dynamic array.

= We will say that the execution time is variable (slow), if the number of operations
varies according to the number of elements currently saved in the data structure, and
constant (fast) otherwise.

LinkedList

e NS NI NI

Implementations

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem)
void addLast(E elem)
void add(E elem, int pos)
E get(int pos)

void removeFirst()

void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList
void addFirst(E elem) variable
void addLast(E elem)
void add(E elem, int pos)
E get(int pos)
void removeFirst()
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList
void addFirst(E elem) variable constant
void addLast(E elem)

void add(E elem, int pos)
E get(int pos)

void removeFirst()

void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList
void addFirst(E elem) variable constant
void addLast(E elem) variable

void add(E elem, int pos)
E get(int pos)

void removeFirst()

void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList
void addFirst(E elem) variable constant
void addLast(E elem) variable variable

void add(E elem, int pos)
E get(int pos)

void removeFirst()

void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList
void addFirst(E elem) variable constant
void addLast(E elem) variable variable

void add(E elem, int pos) variable
E get(int pos)
void removeFirst()
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable

E get(int pos)
void removeFirst()
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable

E get(int pos) constant
void removeFirst()
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst()
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable
void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast()

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast() constant

Comparer Arraylist et LinkedList

= Can you predict which of the two implementations will be faster?

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable variable
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast() constant variable

Discussion

= For some operations, when one implementation is fast, the other is slow;

Discussion

= For some operations, when one implementation is fast, the other is slow;
= Looking at the table above, when should we use an implementation based on arrays?

Discussion

= For some operations, when one implementation is fast, the other is slow;
= Looking at the table above, when should we use an implementation based on arrays?
For direct access (random).

Discussion

= For some operations, when one implementation is fast, the other is slow;

= Looking at the table above, when should we use an implementation based on arrays?
For direct access (random).

= When should a linked list be used?

Discussion

= For some operations, when one implementation is fast, the other is slow;

= Looking at the table above, when should we use an implementation based on arrays?
For direct access (random).

= When should a linked list be used?

= If all the accesses are at the start of the list;

Discussion

= For some operations, when one implementation is fast, the other is slow;

= Looking at the table above, when should we use an implementation based on arrays?
* For direct access (random).

= When should a linked list be used?

= If all the accesses are at the start of the list;

= Which implementation consumes more memory?

Implementations

Reference to the rear node

Accelerate addLast for a singly linked list

= There is a simple implementation technique for accelerating the addition of an element
at the end of a linked structure.

What makes the current implementation costly?

Yes, you have to traverse the list from one end to the other in order to add the item
at the very end.

= We could of course add the elements in reverse order, but that would only move the
problem, the method addFirst() would be slow.

= For the method size(), we saw that the use of an additional instance variable, count,
could save us from going through the list unnecessarily.

What would we need in this case to avoid traversing the list?

Yes, a new variable pointing to the last item on the list.

Memory diagram

* Representing the empty list:

head
tail

= General case:

LAl e] [¢e¢]|] [0o]

e e S N NS
I%

LinkedList

public class LinkedList<E> implements List<E> {

private static class Node<T> {

private T value;
private Node<T> next;

private Node(T value, Node<T> next) {
this.value = value;
this.next = next;

}

private Node<E> head;
private Node<E> tail;

//

public void addLast(E elem) {

Node<E> newNode

newNode = new Node<E>(elem,
if (head == null) {
head = newNode;
tail = head;
} else {
tail.next = newNode;
tail = newNode;
}

null);

Modify all the other methods accordingly

public E removeFirst() {

E saved;
saved = head.value;

head = head.next;
if (head == null) {

tail = null
}

return saved;

Compare the ArraylList and LinkedList

= Adding a reference to the last node.

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable constant
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast() constant variable

Compare the ArraylList and LinkedList

= Adding a reference to the last node.

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable constant
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast() constant variable

= |s removelast faster now, as well?

Implementations

Doubly linked nodes

Accelerate removelast

|

previous

tail

= What do you think?

Accelerate removelast

Le] [}

A_|

R a e NS N
previous \/ N T# \/#

= Moving the rear reference is now easy and fast!

Accelerate removelast

La] [e] [e] [0o]

I I S S &

T T'é: h

Moving the rear reference is now easy and fast!

Except moving the reference previous is difficult and expensive.

LinkedList

e NS NI NI

LinkedList

La] [] [¢] [0o]

Doubly linked list

public class LinkedList<E> implements List<E> {

private static class Node<T> {
private T value;
private Node<T> prev;
private Node<T> next;
private Node(T value, Node<T> prev, Node<T> next) {

this.value = value;
this.prev = prev;
this.next = next;

}
}

private Node<E> head;
private Node<E> tail;

//

removelast: general case

La] [] [c¢] [0o]

::Eluﬁ@ﬁ\ri\rf\

removelast: special case

head

i

tail

B

public E removelLast() {

E saved;

saved = tail.value;

if (head.next == null) {
head = null
tail = null;

} else {
tail = tail.prev;
tail .next = null;

}

return saved;

Compare ArraylList and LinkedList

= Doubly linked nodes.

ArrayList LinkedList

void addFirst(E elem) variable constant
void addLast(E elem) variable constant
void add(E elem, int pos) variable variable
E get(int pos) constant variable

void removeFirst() variable constant

void removelast() constant constant

Discussion

= What will be the impact of this change?

Preconditions : add(int pos, E elem)

= What are the prerequisites to the method add?

Preconditions : add(int pos, E elem)

= What are the prerequisites to the method add?

if (elem == null) {

throw new NullPointerException("null");
}
if (pos <0 || pos > size) {

throw new IndexOutOfBoundsException(pos);
}

Special cases : add(int pos, E elem)

= What are the special cases?

e B

i =L

Special cases : add(int pos, E elem)

= What are the special cases?

head

tail

S

= Adding at position 0.

Special case : add(int pos, E elem)

Special case: head = new Node<E>(elem, null, head)
La] L[] L[e]

head

tail

= What’s missing?

Special case : add(int pos, E elem)

Special case: head.next.previous = head
LA [8] [e]

head

? SN S e et

Special case : add(int pos,

Special case:

if (pos == 0) {
head = new Node<E>(elem, null, head);
head . next.previous = head;

}

Special case : add(int pos,

Special case:

if (pos == 0) {
head = new Node<E>(elem, null, head);
head . next.previous = head;

}

= Have we thought about every possible case?

Special case : add(int pos, E elem)

Special case:

if (pos == 0) {
head = new Node<E>(elem, null, head);
head . next.previous = head;

= Have we thought about every possible case?
= What if the list is empty?

Special case : add(int pos,

Special case:

if (pos == 0) {
head = new Node<E>(elem, null, head);
if (tail == null) {
tail = head;
} else {
head . next.previous = head;
}
}

General case: add(int pos, E elem)

General case: addint at position 2.

[A]
Gianas

<P
{1
%

tail

General case : add(int pos, E elem)

General case: traverse the list until pos-1

(6 |
&
o8

head

tail

1&g

[T

General case : add(int pos, E elem)

General case: q = p.next

head

tail

1&g
OF
%

General case : add(int pos, E elem)

General case: p.next = new Node<E>(elem, p, q)
LA] [e] [8] [0o]

R A SYAS

p q

S e

General case add(int pos, E elem)

General case: q.previous = p.next

(a] [&] [&] [>o]
head
tail ﬁb g ¥ L V‘\; Kl#
p a
= =

General case add(int pos, E elem)

General case:

Node<E> before, after;
before = head;

for (int i = 0; i < (pos—1); i++) {
before = before.next;
}
after = before.next;
before.next = new Node<E>(elem, before, after);
after.previous = before.next;

General case add(int pos, E elem)

General case:

Node<E> before, after;
before = head;

for (int i = 0; i < (pos—1); i++) {
before = before.next;
}
after = before.next;
before.next = new Node<E>(elem, before, after);
after.previous = before.next;

= Have we thought of all the cases?

General case add(int pos, E elem)

General case:

Node<E> before, after;
before = head;

for (int i = 0; i < (pos—1); i++) {
before = before.next;
}
after = before.next;
before.next = new Node<E>(elem, before, after);
after.previous = before.next;

= Have we thought of all the cases?
What if before refers to the last element?

add(int pos, E elem)

Node<E> before, after;

before = head;

for (int i = 0; i < (pos—1); i++) {
before = before.next;

}
after = before.next;
before.next = new Node<E>(elem, before, after);
if (before == tail) {

tail = before.next;
} else {

after.previous = before.next;
}

if (elem == null) {
throw new NullPointerException("null");

if (pos < 0 || pos > size) {
throw new IndexOutOfBoundsException(pos);
}

if (pos == 0)
head = new Node<E>(elem, null, head);
if (tail == null) {
tail = head;
} else {
head.next.previous = head;
}
} else {

Node<E> before, after;

before = head;

for (int i = 0; i < (pos—1); i++) {
before = before.next;

after = before.next;
before.next = new Node<E>(elem, before,
if (before == tail) {

tail = before.next:

} else {

after.previous = before.next;

}

size++;

after);

Implementations

Dummy node

= The following implementation technique allows you to eliminate multiple special
cases.

= The following implementation technique allows you to eliminate multiple special
cases.

* The technique uses a dummy node containing no element (data).

= The following implementation technique allows you to eliminate multiple special
cases.

= The technique uses a dummy node containing no element (data).
Plus, the list is circular!

public class LinkedList<E> implements List<E> {
private static class Node<T> {
private T value;
private Node<T> prev;
private Node<T> next;
private Node(T value, Node<T> prev, Node<T> next) {

this.value = value;
this.prev = prev;
this.next = next;

}
}

private Node<E> head;

= Give the implementation of the constructor.

public class LinkedList<E> implements List<E> {
private static class Node<T> {
private T value;
private Node<T> prev;
private Node<T> next;
private Node(T value, Node<T> prev, Node<T> next) {

this.value = value;
this.prev = prev;
this.next = next;

}
}

private Node<E> head;

= Give the implementation of the constructor.

public LinkedList() {
head = new Node<E>(null, null, null);
head.prev = head;
head . next = head;

Discussion

= What complicates the implementation of linked-list methods without a dummy
node?

Discussion

= What complicates the implementation of linked-list methods without a dummy
node?

= The methods usually have a special case for modifying in first position.

Discussion

= What complicates the implementation of linked-list methods without a dummy
node?

= The methods usually have a special case for modifying in first position.

= In general, one must change the variable next of the preceding node, unless one is
processing the first node, in which case one must change the variable head.

Discussion

= What complicates the implementation of linked-list methods without a dummy
node?

= The methods usually have a special case for modifying in first position.
= In general, one must change the variable next of the preceding node, unless one is
processing the first node, in which case one must change the variable head.

Changes at the end of the list are also a problem since the value of tail must be changed.

Discussion

What complicates the implementation of linked-list methods without a dummy
node?

= The methods usually have a special case for modifying in first position.
= In general, one must change the variable next of the preceding node, unless one is
processing the first node, in which case one must change the variable head.

Changes at the end of the list are also a problem since the value of tail must be changed.

For the implementation having a dummy node, the treatments are uniform, we always
change the variable next of the preceding node.

f
;
o]

head head
R ()
size size

(e] [[F]

R
B

i
o
E
B!
D

head
E@
[o]

head

)
| (=]
(e] [0]
head
o6
[7]
B 0 F
head
25660

Prologue

= A reference to the last node makes it easy to add an element to the end of the list.

= A reference to the last node makes it easy to add an element to the end of the list.

* The double linked nodes make it easy to remove the last element, but also to
navigate the list in reverse order.

= A reference to the last node makes it easy to add an element to the end of the list.

« The double linked nodes make it easy to remove the last element, but also to
navigate the list in reverse order.

= Circular lists with dummy nodes have no special cases!

Next module

= List : iterator

References |

ﬁ E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

51 /51

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Definitions
	Implementations
	Reference to the rear node
	Doubly linked nodes
	Dummy node

	Prologue

