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Summary

In this lecture, we consider probabilistic models for biological
sequences. First, we review at a very high level approaches to
determine if a given sequence alignment is statistically significant.
Next, we look at simple models for one biological sequence, as
well as a pairwise alignment. Finally, we introduce the concept of
Markov chain and its application to derive a substitution score.
General objective

Explain in your own terms the probabilistic models for
biological sequences.

Reading

Warren J. Ewens, Gregory R. Grant (2001) Statistical
Methods in Bioinformatics: An Introduction. Springer.
Pages: 238-249.
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What is a significant score?

One approach consist in generating random sequences.
(say 100 or more)

Monte Carlo
Shuffling
(Or by simply reading sequences backwards)

and computing the optimal score for the alignment of those
random sequences. Assuming the distribution of the scores follows
a normal distribution, a simple test such as the Z score, would
allow to distinguish the alignments of homologues from those of
random pairs:

Z = (x − µ)/σ

Empirical studies suggest that a Z score greater than 6 (3 standard
deviations) is significant for the comparison of biological sequences.
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Remarks

Here, using actual (randomized) sequences ensures that
the frequency of the amino acids is 1) biological and
2) comparable to the sequences under studies. It is also
important that the randomized sequences being of
approximately the same length as the sequences to be
tested.
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Remarks (continued)

Very little is known about the distribution of global
alignments scores. In particular, one cannot assume a
normal distribution.
Much more is known about the distribution of local
alignment scores. For the case of ungapped local
alignment it has been shown that the scores follows an
extreme value distribution (EVD). Computational
experiments suggests that gapped local alignments also
follow an EVD.
Based on EVD, it’s possible to calculate what is called an
E value, which depends on the score, the size of the
query, as well as the size of the database.
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Remarks (continued)

“[An E-value] represents the number of distinct
alignments with equivalent or superior score that might
have been expected to have occurred purely by chance”
Altschul 1998.
An E-value of 10 is not statistically significant, whereas an
E value of 10−5 is.
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Probabilistic Framework

Recall that a sequence alignment should answer the
question: “are the two sequences (evolutionary)
related?”

In other words, is the observed sequence alignment the
result of:

1. an evolutionary process, where both sequences have
evolved independtly from a common ancestry, or

2. can it be attributable to chance alone; randomly selecting
two unrelated sequences could produce a similar
alignment score.
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Protein sequence probabilities

It’s useful to consider a simple probabilistic model of a protein
sequence, given pa, the probability of observing the amino
acid a, such that,

pa > 0
20∑

a=1
pa = 1

Let’s define the probability of a sequence S(1)S(2) . . . S(n) as,

pS(1)pS(2) . . . pS(n) =
n∏

i=1
pS(i)
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Remarks

This model is simple in the sense that it assumes that
all proteins are n residues long.

A more realistic models should account for all possible
lengths and the sum over all possible sequences
should be 1.
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Amino acids probabilities
A common practice consists of estimating the amino acid
probabilities using the observed frequencies in a large database.
> GetAaFrequency(DB);

Alanine 7.62 %
Arginine 5.19 %

Asparagine 4.40 %
Aspartic acid 5.27 %

Cysteine 1.64 %
Glutamine 3.94 %

Glutamic acid 6.40 %
Glycine 6.87 %

Histidine 2.24 %
Isoleucine 5.84 %

Leucine 9.47 %
Lysine 5.96 %

Methionine 2.38 %
Phenylalanine 4.10 %

Proline 4.91 %
Serine 7.09 %

Threonine 5.64 %
Tryptophan 1.23 %

Tyrosine 3.18 %
Valine 6.62 %

Here are the amino acid frequencies observed for the database
Swiss-Prot version 39.

Marcel Turcotte CSI5126. Algorithms in bioinformatics



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preamble Significance Models Substitutions Markov Chains PAM
Preamble Significance Models Substitutions Markov Chains PAM

Probabilistic Interpretation of a Sequence Alignment

Consider two aligned sequences, S1 and S2. For simplicity,
ungaped alignments are considered.

S1(1) S1(2) . . . S1(n)
S2(1) S2(2) . . . S2(n)

The interpretation requires weighting two outcomes.

1. Sequences are related (Match Model – M)
2. Sequences are unrelated (Random Model – R)
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Match model

In the match model, we have,

P(S1, S2|M) =
∏

i
q(S1(i), S2(i))

where q(a, b) represents the probability that both residues a and b
have both been derived independently from an ancestral
residue c.

S(0)S(1)...S(n)

S1(0)S1(1)...S1(n)

S2(0)S2(1)...S2(n)

S(i)

S1(i)

S2(i)
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Random model

Whilst the random model is simply,

P(S1, S2|R) =
∏

i
pS1(i)

∏
j

pS2(j)

but since we assumed that |S1| = |S2|,

P(S1, S2|R) =
∏

i
pS1(i)pS2(i)
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The ratio of the two likelihoods is called an odds-ratio (or
likelihood-ratio),

P(S1, S2|M)
P(S1, S2|R) =

∏
i

q(S1(i), S2(i))
pS1(i)pS2(i)

taking the logarithm leads to a quantity known as the log-odds
ratio,

S(S1, S2) =
∑

i
log(q(S1(i), S2(i))

pS1(i)pS2(i)
)

where each,
s(a, b) = log(q(a, b)

papb
)

represents the log-likelihood ratio that the residue pair (a, b) will
occur as an aligned pair, as opposed to unaligned.
In the case of proteins s(a, b) represents a 20 × 20 matrix, known
as score matrix or substitution matrix.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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In this view, the total score of alignment is the sum of
all the terms for the aligned pairs of residues and gaps.

The score is interpreted as the logarithm of the relative
likelihood that the sequences are related vs not related.
Positive terms represent substitutions are more likely
than would be expected by chance.
Negative terms represent unfavorable substitutions.
Finally, when the two hypotheses are equally likely the
log-likelihood ratio will be zero.
We see that such substitution matrix can be used for
calculating local sequence alignments, since likely
alignments will have a positive score and unlikely
alignment will have a negative score.
Additive scoring scheme means that positions along
the sequence are considered independent from one
another, i.e. mutations at different sites have occurred
independently. It’s a working hypothesis.
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What about the Substitution Scores?
The substitution scores that we used were rather arbitrary, either
the identity matrix or some hand made matrix.

Let’s have a look at scoring schemes that are appropriate for
protein sequences.

Certain amino acids have similar properties (structure,
volume, charge, hydrophobicity, etc.)
Looking at the genetic code, you can see that certain
pairs of amino acids are such that the minimum number
of mutations at the codon level to change the encoding
from one amino acid type to another is only one (Ala and
Asp, GCC and GAC), there are pairs that need a
minimum of two mutations (Ala and Arg, CGA and GCA)
or even three (Asn and Trp, AAC or AAU and UGG).
The substitution score is expected to reflect both of
these effects.
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from one amino acid type to another is only one (Ala and
Asp, GCC and GAC), there are pairs that need a
minimum of two mutations (Ala and Arg, CGA and GCA)
or even three (Asn and Trp, AAC or AAU and UGG).

The substitution score is expected to reflect both of
these effects.
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(20) Amino Acids

A (ALA) D (Asp) E (Glu) K (Lys) P (Pro) W (Trp ) V (Val)

R (Arg) C (Cys) G (Gly) I (Ile) M (Met) S (Ser) Y (Tyr)

N (Asn) Q (Gln) H (His) L (Leu) F (Phe) T (Thr)
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F

M

A
G

C

E

H

D

I L V

PS

T

N

R

K

Y
W

Q

aromatic

aliphatic
hydrophobic

polar

tiny

small

positive

charged negative
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Genetic Code

U C A G
U UUU Phe UCU Ser UAU Tyr UGU Cys U
U UUC Phe UCC Ser UAC Tyr UGC Cys C
U UUA Leu UCA Ser UAA Stop UGA Stop G
U UUG Leu UCG Ser UAG Stop UGG Trp A
C CUU Leu CCU Pro CAU His CGU Arg U
C CUC Leu CCC Pro CAC His CGC Arg C
C CUA Leu CCA Pro CAA Gln CGA Arg A
C CUG Leu CCG Pro CAG Gln CGG Arg G
A AUU Ile ACU Thr AAU Asn AGU Ser U
A AUC Ile ACC Thr AAC Asn AGC Ser C
A AUA Ile ACA Thr AAA Lys AGA Arg A
A AUG Met ACG Thr AAG Lys AGG Arg G
G GUU Val GCU Ala GAU Asp GGU Gly U
G GUC Val GCC Ala GAC Asp GGC Gly C
G GUA Val GCA Ala GAA Glu GGA Gly A
G GUG Val GCG Ala GAG Glu GGG Gly G
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Deriving Scores

Could be derived from first principles
(chemical properties, etc.)
Could be estimated from the data
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Pitfalls

Sampling problem: sequences come into families
Time dependent: for distant sequences, we’d expect the
probability of a substitution to be large, and low if the two
sequences are close homologues

For short time periods, the influence of the genetic code
is expected to be stronger than the chemical properties,
the trend should be reversed for longer intervals.
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86.5% identity; Global alignment score: 786

10 20 30 40 50 60
A VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGA

:::::::.:::::::::::.:. .::::::::::.:::::::::::.::::: :::.::
B VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHFNLSHGSDQVKAHGQ

10 20 30 40 50 60

24.8% identity; Global alignment score: 46

10 20 30 40 50
A VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFD-LSHGSAQ--VKG

::::.: :::..:.:. .: .:. . : .. : . : .:. : :.:. ::.
B SLSAAQKDNVKSSWAKA---SAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAKGTVKN

10 20 30 40 50

⇒ Consider the subtitution s(Gly,Ala) at position 8 of the first
alignment and the same substitution at position 15 in the second
alignment, are those two substitutions equally likely?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Markov Chains

We need a framework to model substitutions.
Discrete-time homogeneous finite Markov chain
models
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Our presentation will be informal. An entire course could be
taught on Markov chains and stochastic processes.

MAT 4374 Modern Computational Statistics
Simulation including the rejection method and importance
sampling; applications to Monte Carlo Markov chains.
Resampling methods such as the bootstrap and jackknife,
with applications. Smoothing methods in curve
estimation.
MAT 5198 Stochastic Models
Markov systems, stochastic networks, queuing networks,
spatial processes, approximation methods in stochastic
processes and queuing theory. Applications to the
modelling and analysis of computer-communications
systems and other distributed networks.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Markov Chains

Like finite state automata (FSA):

Finite Markov chains allow to model processes which can
be represented by a finite number of states.
A process can be in any of these states at a given
time; for some discrete units of time t = 0, 1, 2, . . ..
E.g. the amino acid type for a given sequence position at
time t.
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Markov Chains

Like finite state automata (FSA):
Finite Markov chains allow to model processes which can
be represented by a finite number of states.

A process can be in any of these states at a given
time; for some discrete units of time t = 0, 1, 2, . . ..
E.g. the amino acid type for a given sequence position at
time t.
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Markov Chains

Like finite state automata (FSA):
Finite Markov chains allow to model processes which can
be represented by a finite number of states.
A process can be in any of these states at a given
time; for some discrete units of time t = 0, 1, 2, . . ..

E.g. the amino acid type for a given sequence position at
time t.
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Markov Chains

Like finite state automata (FSA):
Finite Markov chains allow to model processes which can
be represented by a finite number of states.
A process can be in any of these states at a given
time; for some discrete units of time t = 0, 1, 2, . . ..
E.g. the amino acid type for a given sequence position at
time t.
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Markov Chains

Unlike FSAs:

The transitions from one state to another are
stochastic (not deterministic).
If the current state of the process at time t is Ei then at
time t + 1 either the process stays in Ei or move to Ej, for
some j, according to a well defined probability.
E.g. at time t + 1 the amino acid type for a given
sequence position either stays the same of is substituted
by one of the remaining 19 amino acid types, according
to a well defined probability, to be estimated.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Markov Chains
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Markov Chains

Unlike FSAs:
The transitions from one state to another are
stochastic (not deterministic).
If the current state of the process at time t is Ei then at
time t + 1 either the process stays in Ei or move to Ej, for
some j, according to a well defined probability.
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Markov Chains

Unlike FSAs:
The transitions from one state to another are
stochastic (not deterministic).
If the current state of the process at time t is Ei then at
time t + 1 either the process stays in Ei or move to Ej, for
some j, according to a well defined probability.
E.g. at time t + 1 the amino acid type for a given
sequence position either stays the same of is substituted
by one of the remaining 19 amino acid types, according
to a well defined probability, to be estimated.
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Markov Chains

E1

E2

E3

0.4

0.4

0.8

0.6

0.1
0.6

0.1
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Properties

A (first-order) Markovian process must conform to the following
2 properties:

1. Memory less. If a process is in state Ei at time t then
the probability that it will be in state Ej at time t + 1 only
depends on Ei (and not on the previous states visited at
time t′ < t, no history). This is called a first-order
Markovian process.

2. Homogeneity of time. If a process is in state Ei at time
t then the probability that it will be in state Ej at time
t + 1 is independent of t.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Properties

A (first-order) Markovian process must conform to the following
2 properties:

1. Memory less. If a process is in state Ei at time t then
the probability that it will be in state Ej at time t + 1 only
depends on Ei (and not on the previous states visited at
time t′ < t, no history). This is called a first-order
Markovian process.

2. Homogeneity of time. If a process is in state Ei at time
t then the probability that it will be in state Ej at time
t + 1 is independent of t.
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Mutations are often modeled as the result of a Markovian
process. For a given protein, if the amino acid type found at a
certain position is A at time t then:

1. The probability that A is replaced by B at time t + 1
depends only on the current amino acid type found at
this position at time t, which is A, and the fact that C
was previously found at this position for some t′ < t does
not influence the probability of A being substituted by B.

2. Also, the probability of A being replaced by B at t + 1 is
independent of t, i.e. the fact that this event is occuring
now or 250 million years ago does not affect the
probability of A being substituted by B.

Sometimes the concept of time is replaced by that of space. This
allows to model dependencies along a protein or DNA sequence.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Markov chain

A (first-order) Markov chain is a sequence of random variables

X0, . . . , Xt−1, Xt

that satisfies the following property

P(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0) = P(Xt = xt|Xt−1 = xt−1)

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Markov chain

More generally, a m-order Markov chain is a sequence of random
variables:

X0, . . . , Xt−1, Xt

that satisfies the following property

P(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0)

= P(Xt = xt|Xt−1 = xt−1, . . . , Xt−m = xm)

a 0-order model is known as a Bernouilli model. Markov chain
models are denoted Mm, where m is the order of the model, e.g.
M0, M1, M2, M3, etc.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Transition Probabilities
The transition probabilities, pij, can be represented graphically,

E1

E2

E3

0.4

0.4

0.8

0.6

0.1
0.6

0.1

or as a transition probability matrix,

P =

 0.8 0.1 0.1
0.6 0.4 0.0
0.6 0.0 0.4


Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Transition Probabilities

P =

 0.8 0.1 0.1
0.6 0.4 0.0
0.6 0.0 0.4


where pij is understood as the probability of a transition
from state i (row) to state j (column).
The values in a row represent all the transitions from
state i, i.e. all outgoing arcs, and therefore their sum
must be 1.
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0.1

0.4

0.8

0.2

E1 E2

E3

E4

E5

0.5

0.4

0.4

0.2

0.2 0.1

0.5
0.6

The framework allows to answer elegantly questions such
as this one, ‘‘a Markovian random variable is in state
Ei at time t, what is the probability that it will be in
state Ej at t + 2?”

For the Markovian process graphically depicted above,
knowing that a random variable is in state E2 at time t
what is the probability that it will be state E5 at
t + 2, i.e. after two transitions?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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There are exactly 3 paths of length 2 leading from E2
to E5: (E2, E2, E5), (E2, E3, E5) and (E2, E4, E5).

The probability that (E2, E2, E5) is followed is
0.2 × 0.2 = 0.04
The probability that (E2, E3, E5) is followed is
0.1 × 0.4 = 0.04
The probability that (E2, E4, E5) is followed is
0.1 × 0.4 = 0.04
Therefore, the probability that the random variable is
found in E5 at t + 2 knowing that it was in E2 at t is
0.04 + 0.04 + 0.04 = 0.12.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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In general, the probability that a random variable is
found in state Ej at t + 2 knowing that it was in Ei at t is,

p(2)
ij =

∑
k

pikpkj

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



…which is the product of row i by column j of the
transition probability matrix.

This is also the element (i, j) in the matrix P2!
Hence, P2 gives all the transition probabilities moving
from state Ei to Ej in two units of time (steps).

P =


0.2 0.8 0.0 0.0 0.0
0.4 0.2 0.1 0.1 0.2
0.0 0.6 0.0 0.0 0.4
0.0 0.6 0.0 0.0 0.4
0.0 0.0 0.5 0.5 0.0



P2 =


0.36 0.32 0.08 0.08 0.16
0.16 0.48 0.12 0.12 0.12
0.24 0.12 0.26 0.26 0.12
0.24 0.12 0.26 0.26 0.12
0.00 0.60 0.00 0.00 0.40



⇒ What are all those zeros?
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In general, Pn (P to the nth power) gives all the
“n-steps” transition probabilities.

P5 =


0.1974 0.3827 0.1280 0.1280 0.1638
0.1914 0.3894 0.1182 0.1182 0.1827
0.1536 0.4406 0.1085 0.1085 0.1888
0.1536 0.4406 0.1085 0.1085 0.1888
0.2304 0.2688 0.1688 0.1688 0.1632



P25 =


0.1899 0.3797 0.1266 0.1266 0.1772
0.1899 0.3797 0.1266 0.1266 0.1772
0.1899 0.3797 0.1266 0.1266 0.1772
0.1899 0.3797 0.1266 0.1266 0.1772
0.1899 0.3797 0.1266 0.1266 0.1772



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



In three steps, we have,

p(3)
ij =

∑
k

pikp(2)
kj

and for n steps,

p(n)
ij =

∑
k

pikp(n−1)
kj

In other words,

P(n) = P × P × . . . × P︸ ︷︷ ︸
n times
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PAM Matrices

Dayhoff, M., Schwartz, R. and Orcutt, B. (1978). A
model of evolutionary change in protein. In Atlas of
Protein Sequences and Structure, 5, 345–352.

PAM stands for “Point Accepted Mutation”, which is a
mutation which not only has occurred but it has also been
retained and has spread to the entire population
(species).
The PAM1 matrix is a Markov chain matrix
corresponding to a period of time such that 1% of the
amino acids have undergone a point accepted
mutation.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Margaret Dayhoff (1925–1983)

Georgetown University Medical Center Professor, and
Bioinformatics pioneer!

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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PAM matrix: construction

Just like for the BLOSUM matrix, which is another
popular substitution scheme, the probabilities are
estimated from data.

The starting point is a collection ungapped multiple
alignments.
The sequences have to be sufficiently close (homologues)
that they can be reliably aligned (with a trivial
substitution matrix). Dayhoff et al. decided that all the
sequences in an alignment had to be no more than 15%
different from any other sequence.
The choice of the cutoff was also dictated by the fact that
they wanted to avoid the possibility that more than one
mutation had occurred at a given site, which is
important since substitutions matrices for longer period of
time will be derived from PAM1 by raising it the nth
power.
With the low amount of data available at the time, and
the above constraints, they were able to collect 71
families.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Phylogenetic trees

From the sequences, phylogenetic trees are reconstructed.
The method that they used is called maximum
parsimony. It produces trees such that total number of
substitutions across the whole tree is minimum.
In the following trees, only one mutational event is
necessary to explain the actual sequences:

A BA

A

A

s(A,B)

A BA

A

B
s(B,A)

A

A

B A

A

s(A,B)

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Phylogenetic trees (continued)

On the other hand, the following tree necessitates 2 events, not
minimum, therefore not the most parsimonious tree.

A B A

A

B
s(B,A)

s(A,B)

Marcel Turcotte CSI5126. Algorithms in bioinformatics



... SDQ ...

... SAQ ...

... SAK ...... TDQ ...... SDQ ...

ancestral sequences
reconstructed

actual sequences

The trees are such that the leaves are labeled with the actual
(contemporary) sequences and the internal nodes are labeled
with ancestral (reconstructed) sequences. Therefore,
contemporary sequences are never compared directly.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Estimation

Pairs (i, j) are counted for adjacent nodes in all the trees
and divided by the number of trees; if there are more than
one “most parsimonious tree”.

The likelihood of a substitution i to j is assumed to be the
same as the likelihood of a substitution j to i. Therefore,
when counting the number of substitutions, cells Ai,j and
Aj,i are both incremented.
The result is a matrix, A, such that Aij counts the
number of observed substitutions from/to the amino acid
type i to/from the amino acid type j.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Our task is to estimate the transition probabilities of the Markov
chain matrix, the following quantity moves us one step closer,

aij = Aij∑
k Aik

A

C

D

Y

...

A(A,A)
A(A,C)

A(A,D)

A(A,Y)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



For reasons that will be explained in a moment, the aij are scaled
by a factor c. For i ̸= j, let,

pij = c · aij

and
pii = 1 −

∑
k̸=i

c · aik

i.e.
pii = 1 −

∑
k ̸=i

pik

and ∑j pij = 1 by definition.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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The expected proportion of the amino acids that will change
after one unit of time is given by,∑

i

∑
j ̸=i

pipij

where the frequency of occurrence of each amino acid type, pi, is
estimated from the observed distribution found in the original data.
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The constant c is defined such that the expected proportion of
amino acid changes, after one unit of time, is 1%.

0.01 =
∑

i

∑
j̸=i

pipij

0.01 =
∑

i

∑
j̸=i

pi c aij

0.01 = c
∑

i

∑
j ̸=i

piaij

i.e.,
c = 0.01∑

i
∑

j ̸=i piaij
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In the literature, the resulting matrix is often denoted M,
rather than P, and so the pijs are referred to as mijs, and
this constitutes PAM1 or M1.

The element (i, j) of Mn, m(n)
ij , is the probability to

observe the amino type j at a given position knowing that
i occurred at that same position n units of time ago.
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The transition probability matrix is transformed into a scoring
matrix as follows:

C · log

m(n)
ij
pj



Let q(i, j) be the join probability that i occurred at a given position
at time 0, and to observe j after n units of time, at the same
position. The quantities, q(i, j) and pij are related as follows,

q(i, j) = pim(n)
ij

i.e.
m(n)

ij = q(i, j)
pi
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Therefore, elements of the scoring matrix represent,

C · log
(

q(i, j)
pipj

)
which brings us back to our probabilistic interpretation of a
sequence alignment:

S(S1, S2) =
∑

i
log(

qS1(i)S2(i)
pS1(i)pS2(i)

)

where S1 and S2 are two aligned sequences.

⇒ PAM250 is the most frequently used matrix.
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DayMatrix(Peptide, pam=250, Sim: max=14.152, min=-5.161, max offdiag=5.080, del=-19.814-1.396*(k-1))

C 11.5
S 0.1 2.2
T -0.5 1.5 2.5
P -3.1 0.4 0.1 7.6
A 0.5 1.1 0.6 0.3 2.4
G -2.0 0.4 -1.1 -1.6 0.5 6.6
N -1.8 0.9 0.5 -0.9 -0.3 0.4 3.8
D -3.2 0.5 -0.0 -0.7 -0.3 0.1 2.2 4.7
E -3.0 0.2 -0.1 -0.5 -0.0 -0.8 0.9 2.7 3.6
Q -2.4 0.2 0.0 -0.2 -0.2 -1.0 0.7 0.9 1.7 2.7
H -1.3 -0.2 -0.3 -1.1 -0.8 -1.4 1.2 0.4 0.4 1.2 6.0
R -2.2 -0.2 -0.2 -0.9 -0.6 -1.0 0.3 -0.3 0.4 1.5 0.6 4.7
K -2.8 0.1 0.1 -0.6 -0.4 -1.1 0.8 0.5 1.2 1.5 0.6 2.7 3.2
M -0.9 -1.4 -0.6 -2.4 -0.7 -3.5 -2.2 -3.0 -2.0 -1.0 -1.3 -1.7 -1.4 4.3
I -1.1 -1.8 -0.6 -2.6 -0.8 -4.5 -2.8 -3.8 -2.7 -1.9 -2.2 -2.4 -2.1 2.5 4.0
L -1.5 -2.1 -1.3 -2.3 -1.2 -4.4 -3.0 -4.0 -2.8 -1.6 -1.9 -2.2 -2.1 2.8 2.8 4.0
V -0.0 -1.0 0.0 -1.8 0.1 -3.3 -2.2 -2.9 -1.9 -1.5 -2.0 -2.0 -1.7 1.6 3.1 1.8 3.4
F -0.8 -2.8 -2.2 -3.8 -2.3 -5.2 -3.1 -4.5 -3.9 -2.6 -0.1 -3.2 -3.3 1.6 1.0 2.0 0.1 7.0
Y -0.5 -1.9 -1.9 -3.1 -2.2 -4.0 -1.4 -2.8 -2.7 -1.7 2.2 -1.8 -2.1 -0.2 -0.7 -0.0 -1.1 5.1 7.8
W -1.0 -3.3 -3.5 -5.0 -3.6 -4.0 -3.6 -5.2 -4.3 -2.7 -0.8 -1.6 -3.5 -1.0 -1.8 -0.7 -2.6 3.6 4.1 14.2

C S T P A G N D E Q H R K M I L V F Y W

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Remarks

One of the problems with the PAM matrix, as calculated
by Dayhoff et al., is that higher values of PAM are
derived from smaller values of PAM.

For short period of times, one would expect the
substitutions to be dominated by the constraints of
the genetic code; substitutions that require a single
mutation at the codon level.
For longer period of time, one would expect to observe
substitutions that reflect the chemical properties of
the amino acids.
To overcome this problem, Henikoff & Henikoff 1991, have
constructed a set of matrices, BLOSUM, derived from
(ungapped) alignments at various percentage of identities.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Remarks (continued)

Substitution scores are average scores. They do not
account for the context: n-term, c-term, exposed,
buried, helix, strands, etc.
The cost of a substitution, say Ala to Trp, remains the
same no matter where along the sequence the substitution
occurs. Later, we will consider models where the cost of a
substitution varies along the sequence; position specific
scoring matrices and Hidden Markov Models.

Marcel Turcotte CSI5126. Algorithms in bioinformatics
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Pensez-y!
L’impression de ces notes n’est probablement pas nécessaire!
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