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Preamble
Summary

We now exploring important adaptations of the pairwise sequence
alignment problem to make it relevant to real-world biology
problems.

General objective

= Select the appropriate pairwise alignment algorithm for a
given problem.

Reading

= Bernhard Haubold and Thomas Wiehe (2006).
Introduction to computational biology: an evolutionary
approach. Birkhauser Basel. Pages 11-15, 30-33.
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Preamble
Reading

Bernhard Haubold and Thomas Wiehe (2006).
Introduction to computational biology: an evolutionary
approach. Birkhauser Basel. Pages 11-15, 30-33.

Wing-Kin Sung (2010) Algorithms in Bioinformatics: A
Practical Introduction. Chapman & Hall/CRC. QH 324.2
.586 2010 Chapter 2.

Dan Gusfield (1997) Algorithms on strings, trees, and
sequences . computer science and computational biology.
Cambridge University Press. Chapters 10 and 11.

Pavel A. Pevzner and Phillip Compeau (2018)
Bioinformatics Algorithms: An Active Learning Approach.
Active Learning Publishers.
http://bioinformaticsalgorithms.com

Chapter 5.
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http://orbis.uottawa.ca/record=b4070326~S0
http://orbis.uottawa.ca/record=b4070326~S0
http://bioinformaticsalgorithms.com
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Edit Distance
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Edit Distance

min = 4
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Edit Distance

min = 4
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Edit Distance

min = 4

0}[
114
2] [
31L
41
51 [
6] [
710
8] [
o]l

L B T e B e B e W e B e e B e B

¢ B 0O 00 B OO0

MMMMSSDMMMD
compliments
compet-ent-

C

11[
0}([
11{
211
31L
4]1[
51L
6] [
71L
81L

o

2]1L
11[
0}[
11{
21
31L
41
51
61
71L

m

31L
21
11[
0}
114
21
31L
4] [
51[
6]1L[

p

4] [
31L
21
11L
0}([
114
21t
31L
4] [
51L

1

51L
4] [
31L
21t
11L
130
21{
31L
4] [
51L

i

61l
5]1[
4] [
31L
21C
21t
2H
31L
4] [
51L

m

711
61[
51(
4] [
31(
31C
3}
31{
4] [
51L

e

81L
71(
61[
51L
4] [
31L
4] [
3}
414
51L

n

t

S

91[ 101[ 11]
91l 10]

81(
710
61l
51(
4] [
4] [
4] [
3}
414

81(
7110
61([
51(
4] [
51(
4]
3H

9]
8]
7]
6]
5]
5]
5]
4}



Edit graph
Remarks

= The calculation of each cell necessitates only three
look-ups (the algorithm does not reconstruct the partial
alignments as we did as we did for the purpose of the
example);

= How many operations are needed then?

= The order in which we visit the cells during the first pass

is not important; as long as the value of the cells

(i—1,j—1),(i—1,)) and (i,j— 1) are known when

calculating the value of the cell (i, ).
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Edit graph
Sequence alignment
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Edit graph

Sequence alignment
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= How many optimal alignments are there?
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Weighted Edit Operations

= A first generalisation of the edit distance problem consists
of associating weights to the edit operations: for
instance, the cost of an insertion/deletion could be 1, the
cost of a mismatch could be 2, and the cost of a match 0
(useful weights will be derived in the next lecture)
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Weighted Edit Operations

A first generalisation of the edit distance problem consists
of associating weights to the edit operations: for
instance, the cost of an insertion/deletion could be 1, the
cost of a mismatch could be 2, and the cost of a match 0
(useful weights will be derived in the next lecture)

The same algorithm can be used only this time it finds the
edit transcript/alignment which has the minimum
overall cost.
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Weighted Edit Operations

A first generalisation of the edit distance problem consists
of associating weights to the edit operations: for
instance, the cost of an insertion/deletion could be 1, the
cost of a mismatch could be 2, and the cost of a match 0
(useful weights will be derived in the next lecture)

The same algorithm can be used only this time it finds the
edit transcript/alignment which has the minimum
overall cost.

The terms weight and cost are used interchangeably in
the C.S. literature whilst score is most frequently used in
the biological literature

Marcel Turcotte CS15126. Algorithms in bioinformatics



Weighted Edit Operations

= Can the weights be arbitrary?

AAATAA AAAT-AA
| x| | wvs | || |1
AAACAA AAA-CAA
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Weighted Edit Operations

= Can the weights be arbitrary?

AAATAA AAAT-AA
' I x 1 1 wvs | | | ||
AAACAA AAA-CAA

= No. What is the relationship between the cost
associated with a substitution and the cost associated
with an insertion?
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Weighted Edit Operations

= Can the weights be arbitrary?

AAATAA AAAT-AA
' I x 1 1 wvs | | | ||
AAACAA AAA-CAA

= No. What is the relationship between the cost
associated with a substitution and the cost associated
with an insertion?

= For a substitution to be selected by the algorithm, its cost
should be less than twice the cost of an insertion,
otherwise the optimisation will favour two insertions, as
above depicted.
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Edit graph
What are the necessary changes to our framework?
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Operation-Weighted Edit Distance

Base conditions,
D(0,0) =0

D(i,0)= ixd,i€l.n
D(0,j) = jxd,jel.m
General case,

D(i—1,))+d,

D(i,j— 1)+ d,

D(i—1,j—1) 4+ m,if S5:(i) = S2()),
D(i— 1,j— 1) + s, if Sl(i) 75 52(_1)

D(i, j) = min

where d represents the cost of a deletion, m the cost of a match
operation and s the cost of a substitution.
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Alphabet-Weighted Edit Distance
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What are the necessary changes to our framework?

Marcel Turcotte CS15126. Algorithms in bioinformatics



Alphabet-Weighted Edit Distance

Base conditions,
D(i,0) = ix d,i€0..n
D(0,j) = jxd,j€0..m
General case,
D(i—1,j)+ d,
D(i,j) = min< D(i,j— 1)+ d,
D(i_ ]-aj_ 1) + s(Sl(i)7 52(./))
where d represents the cost of a deletion and s(x, y) the cost for
substituting x by y, often represented as a substitution matrix:
| A G T C
0.0 04 06 06
04 00 06 06

06 06 00 04
06 06 04 00
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Edit graph

Remarks

= To compare protein sequences, an alphabet weighted
scoring scheme is always used

= There are well known schemes such as PAM and
BLOSUM, more about in a next lecture

Marcel Turcotte CS15126. Algorithms in bioinformatics



=
o
o
)
2
o
w

(=}
79
=
D
(%2}
o
-
0

*

AARNDUCOQEGHTITLTI KMMT FUZPSTWYVB ZX

A 5-2-1-2-1-1-1

R-2 7-1-2
N-1-17 2

0-3-2 0-2-1-1-5
-1 0

1

-1-2-1-1-3-1

-4

0 -2
-3 0

-1 -5
-1 -5

-1 -3

-3
0 -4 -2

-3 -3 -1-1
1

-2

-3 3

0

1

-4

-3 4 0

1-3-4 0-2-4-2

-2 0 0 0

1-1-5

0-1-5-3-4 5

D-2-2 2 8-4 0 2-1-1-4-4-1-4-5-1

Cc -1

-3 -3 -2 -5

-4 -2 -413-3-3-3-3-2-2-3-2-2-4-1-1-5-3-1

0-1-1-1-3 0 4-1-5

10 0-37 2-2 1-3-2 2 0-4-1

E-1 0 0 2-3 2 6-3 0-4-3

Q-1

-5

-3-2-3 1 5-1

1-2-3-1-1-1

G 0-3 0-1-3-2-3 8-2-4-4-2-3-4-2 0-2-3-3-4-1-2-2-5

H-2 0

-5
-5
-5
-5
-5

-2-1-2-3 2-4 0 0-1

0-210-4-3 0-1-1

1

1-1-3

4 -4 -3 -1

-3 2 0-3-3-1-3-1
-3 3 1 1

-3-4-4-4 5 2

I-1-4-3-4-2
L-2-3-4-4-2

-4 -3 -1

-2 -1

-4 -3 -1

-2-3-4-3 2 5

1-1

-3-2-3 0
-3 -1-1

0 -1

1-2 0-3-3 6-2-4-1

K-1 3 0-1-3 2

M -1

0 1

2 3-2 7 0-3-2-1-1
0 1-4 0 8-4-3-2

-2-2-4-2 0-2-3-1

-4 -4 -2 -5

4 -1

1

F-3-3-4-5-2-4-3-4-1

P-1-3-2-1

-4 -3-3-2-1-2-5

-4-1-1-2-2-3-4-1-3-410-1-1

5 2-4-2-2 0 0-1-5

0-1-3-3 0-2-3-1
2 5 -3

0-1 0-1

1-1 1

T O

0 -5

-1

-2 0 0

-1-1-1-1-2-2-1-1-1-1-2-1

-1 0

1-4-4-315 2-3-5-2-3-5

W-3-3-4-5-5-1-3-3-3-3-2-3-1

-2 -1 -5

-3

Yy-2-1-2-3-3-1-2-3 2-1-1-2 0 4-3-2-2 2 8-1

Vv o

-1 -5

-1 5-4-3

-2 0 -3

-4-1-3-3-4-4 4 1-3 1-1-3

-3 -3

1-1 0-4-4 0-3-4-2 0 0-5-3-4 5 2-1-5

B-2-1 4 5-3 0

1-3 4 5-2 0-3-3 1-1-4-1 0-1-2-2-3 2 5-1-5

0o 0

-1
X-1-1-1-1-2-1-1-2-1-1-1-1-1-2

0-3-1-1-1-1-1-5

-2 -1

1

-5 -5 -5 -5 -5 -5

-5 -5 -5

* =5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

In our current

ix be used

can the matr

= Look at the costs

framework?

CSI5126. Algorithms in bioinformatics

Marcel Turcotte



Edit graph
Similarity

= Distance and similarity are two related (“opposed”)
concepts.

= Intuitively, two sequences have “high"” degree of similarity
if their edit distance is “low”

= Whereas, two sequences have a “low” degree of similarity
if their edit distance is “high”

Marcel Turcotte CS15126. Algorithms in bioinformatics



Edit graph
Similarity

Let X' =% U {’—'} denote the alphabet which includes
the gap symbol, and S}, S, denote strings obtained by
inserting gap symbols into S; and S, so that both strings
now have the same length, /, and let's call S}, S, an
alignment, A, of 51, 5,.
The value of an alignment is
/

> s(S1(i), Sa(i))

i=1
where s(x, y) is the cost for matching x against y in the
alignment A.
The similarity of two strings S; and S, is maximum value
of the alignment.
To distinguish similarity and distance, let's introduce a
new index, V(i ), to denote the value of the optimal
(maximal) alignment of S;[1../] and S[1..j];-as well as a

Marcel Turcotte CS15126. Algorithms in bioinformatics



Edit graph
Similarity

V(i,0) = > s(Si(k), ")

0<k<i

V(O’./): Z S(/7/752(k))
0<k<j
V(i—1,j) + s(S:1(7),) =)
V(i,j) = max ¢ V(i j— 1) + s('=', S2()),
Vi = 1.j— 1)+ (5,00 $y0))-

)

= Similarity is more often used than edit distance in the context
of biological alignments.

Marcel Turcotte CS15126. Algorithms in bioinformatics



A simple Example of Dynamic Programming

A/A|T |G|C
Al113111
l l l
e
ClAAE 392
Cll-1-1 |2 |3

=> Deduce the scoring scheme for the maximum similarity
alignment above.

Marcel Turcotte CS15126. Algorithms in bioinformatics



Edit graph
Remarks

It is common practice to use a scoring scheme such that the weight
for a (favourable) match is positive and the weight for a
mismatch is negative.

A G T C '
Al 2 -1 -2 -2 -2
G|-1 2 -2 -2 -2
T|/-2 -2 1 -1 -1
ci-2 -2 -1 1 -1
-2 -2 -1 -1 0

Marcel Turcotte CS15126. Algorithms in bioinformatics



Needleman & Wunsch

V(i—1,j— 1)+ s(S1(i), $2(j)).
Vi—1,j)+d,

(i, j) = max
Wi, j—1)+d.

where d is the cost of a deletion and d < 0

= Needleman & Wunsch (1970) J. Mol. Biol. 48(3):443-453.

Marcel Turcotte CS15126. Algorithms in bioinformatics
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= This alignment has been produced using the Needleman &
Waunsch recurrence equation, the BLOSUMbB0 matrix and what
indel penalty cost?



Global

Free end-gaps (semi-global)

= It is common practice to not penalize the gaps at the
start and the end of an alignment — internal
insertions/deletions are penalized according to the same
scheme as before.

= The end-gaps free alignments are considered to model
more accurately the biological reality.

Marcel Turcotte CS15126. Algorithms in bioinformatics



Global
What are the necessary changes to our framework?

17/ 17/ 17/ b
o o

A

i
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Free end-gaps (semi-global)

To achieve this result two modifications need to be made:

= The initial conditions have to be changed,
V(i,0) = V(0,/) = 0 for all i and j. This takes care of the
indels at the start of the alignment;

= To take care of the spaces at the end of the alignment,
instead of starting the traceback from (n, m), it now
starts from the cell V(n,j) or V(i, m) that has a maximum
value for all i, j (of course there could more than one
place to start). This follows from the definition of V(J, ).

Marcel Turcotte CS15126. Algorithms in bioinformatics



Semi-global

V(0,0) =0
V(i,0)=0,i=1.m
V(0,j) =0,j=1.n

V(i —1,j) +5(51() .
V(i,j) = max ¢ V(i j— 1) + s('—', S2()),
V(i—laj—1)+5 1(1), $50))-

9

Solution is,

_max - [V(m,n), V(i.n), V(. )]

= Two modifications: initialisation, consider the last row/column
to find the optimal value.

Marcel Turcotte CS15126. Algorithms in bioinformatics



Global
Global

Indel = -3; Substitution score:
A C G T

A 1-5-1-5

c-5 1-5-1

G-1-5 1-5

T-5-1-5 1

Global

max = -17

- A A C A C G T G T C T
{ 0} -3} -63}{ -9}[-12][-15] [-18] [-21] [-24] [-27] [-30] [-33]
[ -310 110 -21[ -51{ -8}[-11][-14][-17] [-20] [-23] [-26] [-29]
[ -6][ -2][ -41[ -11[ -41{ -7}{-10}{-13}[-16] [-19] [-22] [-25]
[ -91[ -5][ -31[ -41[ -21[ -5]1[ -61[ -9]1{-12}{-15}{-18}[-21]
[-12][ -8][ -6][ -41[ -5]1[ -31[ -6]1[ -5]1[ -8]1[-11]1[-14]1{-17}

HQ Q= |

AACACGTGTCT
---AC--G--T

Marcel Turcotte CS15126. Algorithms in bioinformatics



Semi-global

Semi-global

max = 4

- A A C A C G T G T C T
- [ oIl olCf olC ol[ oI[ olfL olCL ol[ ol[ olCL ol[ o]
AL ol[ 11[ 11C -21{ 13}[ -21[ -11C -31[ -11[ -31[ -31[ -3]
C[ o0I[-21C -21C 21[ -11{ 2}[ -11[ -21[ -41[ -21[ -21[ -4]
G [ o][-11[ -31C -11C 11C -11{ 3¥C ol[ -11[ -41[ -51[ -71]
T[ oJ[-31[ -61[ -41[ -21[ o1[ ol{ 4YC 1]1[ oI[ -31[ -4]
AACACGTGTCT
-—-ACGT----

Marcel Turcotte CS15126. Algorithms in bioinformatics



Global (extreme and non-realistic example)
max = -63

A A A A A A
[ 01[ -31[ -61[ -91[-12][-15][-18]
[ -31[ -51[ -81[-111[-14]1[-17]1[-20]
[ -6]1[ -81[-10][-13] [-16] [-19] [-22]
[ -91[-11][-13]1 [-15] [-18] [-21] [-24]
[-12] [-14] [-16] [-18] [-20] [-23] [-26]
[-15] [-17] [-19] [-21] [-23] [-25] [-28]
[-18] [-20] [-22] [-24] [-26] [-28] [-30]
[-211 [-23] [-25] [-27] [-29] [-31] [-33]
[-24] [-26] [-28] [-30] [-32] [-34] [-36]
[-271[-29] [-31] [-33] [-35] [-37] [-39]
{-30} [-32] [-34] [-36] [-38] [-40] [-42]
[-331{-35} [-37] [-39] [-41] [-43] [-45]
[-36] [-381{-40} [-42] [-44] [-46] [-48]
[-391 [-41] [-43]1{-45} [-47] [-49] [-51]
[-42] [-44] [-46] [-481{-50} [-52] [-54]
[-45] [-47] [-49] [-51] [-53]1{-55} [-57]
[-48] [-50] [-52] [-54] [-56] [-58]1{-60}
[-51] [-53] [-55] [-57] [-59] [-611{-63}

aaoacacacacaacaacaaacaaacaaaaaa

—————————— AAAAAA-
C€CCCCCCCCCCCCCeee
(-63)



Semi-global
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Local Alignment

To apply a global alignment one has to assume that the two
strings can be aligned on their entire length, which is the case
when comparing proteins from the same family, for example the «
chain of hemoglobin from the pig (Sus scrofa) and the trout
(Oncorhynchus mykiss):

scoring matrix: BLOSUMS0, gap penalties: -12/-2
60.6% identity; Global alignment score: 542

10 20 30 40 50
Pig VLSAADKANVKAAwGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF NLSHGSDQVKAHG
Trout SLTAKDKSVVKAFWGKISGKADVVGAEALGRMLTAYPQTKTVFSHWADLSPGSGPVKKHG
10 20 30 40 50 60

60 70 80 90 100 110
Pig QKVADALTKAVGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPDDFNP

Trout GI IMGAIGKAVGLMDDLVGGMSALSDLHAFKLRVDPGNFKILSHNILVTLAIHFPSDFTP
70 80 90 100 110 120

120 130 140
Pig SVHASLDKFLANVSTVLTSKYR

Trout EVHIAVDKFLAAVSAALADKYR
130 140
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Local
Local Alignment

= In particular, the sequences being compared should be
approximately the same length.

= However, sometimes we would like to compare the DNA

sequence of a gene against an entire genome — looking

for paralogous genes.
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Local Alignment

In the case of proteins, we are more and more appreciating their
modular architecture: e.g. WW domain occurs many proteins.

Dystrophin/ human 1
e g
oo+ BHH ]
|
i
E

NEDDS  mouse wilw
wi w

- wlw

wlw

T e m
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Indel = -3; Substitution score:

A C G T
A 1-5-1-5
c-5 1-5-1
G-1-5 1-5
T-5-1-5 1

Global (Needleman-Wunsch)
max = -16

A A C C T A T A G C T
{ O0}[ -31[ -6]1[ -9]1[-12][-15][-18][-21][-24][-27][-30] [-33]
[ -31{ -1}{ -4}¥{ -7}[-10][-13][-16] [-19] [-22] [-23] [-26] [-29]
[ -61[ -4]1[ -61[ -31{ -6}[ -91[-12]1[-15][-18] [-21] [-22] [-25]
[ -91[ -71[ -51[ -6]1[ -8]1{-11}[-10][-13] [-16] [-17] [-20] [-23]
[-12]1[ -8][ -6][ -91[-11]1[-13]1{-10}[-13]1[-12][-15] [-18] [-21]
[-151[-111[ -91[ -71[-10][-10] [-13]1{ -9}[-12]1[-15][-16] [-17]
[-18]1[-14] [-10] [-10] [-12] [-13] [ -9][-12]1{ -8}{-11}{-14}[-17]
[-211[-17]1[-13] [-11] [-11][-11][-12] [ -8]1[-11][-13][-12]{-13}
[-24]1[-20] [-16] [-14] [-14] [-14] [-10] [-11]1[ -71[-10][-13]1{-16}

=HEAPEOQQQ

AACCTATAGCT-
G--CGATA--TA



Semi-global
max = 1

A A Y
[ oIl ol[ ol[ oIl
[ 01[ -11[ -11[ -3]1[
[ 0I[ -31[ -41[ oIl
[ oIl -11[ -41[ -31L
[ oIl 11[ o01[ -31[
[ 0I[ -21[ -31[ -111
[ oIl 11C -11[ -4I1L
[ 01[ -21[ -41[ -21[
[ ol[ 11[ -11[ -4l

=HEAHPRQQQ

_______ AACCTATAGCT
GCGATATA-——-————--
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-8] [
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0l1C
-11[
-4][
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-71L
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-6] [
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-2] [
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21t
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-4][
=51 [
-81[
-8][

-8] [-

T

0]
-3]
-1]
-3]
-61]
-3]
-6]
-7]
10]



Local
Local Alignment

= The previous slides are presenting examples where the
global and semi-global alignment framework is not suited.
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Local
Local Alignment

= The previous slides are presenting examples where the
global and semi-global alignment framework is not suited.

= The local alignment problem consists in finding a pair
of substrings v and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings — denoted by v*.
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Local
Local Alignment

= The previous slides are presenting examples where the
global and semi-global alignment framework is not suited.

= The local alignment problem consists in finding a pair
of substrings a and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings — denoted by v*.

 Given a string S of length n, there are O(n?) distinct
substrings. Therefore, given two strings S;, of length n,
and S, of length m, there are O(n’m?) possible pairs.

Marcel Turcotte CS15126. Algorithms in bioinformatics



Local
Local Alignment

The previous slides are presenting examples where the
global and semi-global alignment framework is not suited.

The local alignment problem consists in finding a pair
of substrings o and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings — denoted by v*.

Given a string S of length n, there are O(n?) distinct
substrings. Therefore, given two strings S;, of length n,
and S, of length m, there are O(n’m?) possible pairs.

Finding the optimal global alignment of one pair takes
O(mn), therefore, a naive approach to solve the local
alignment problem would run in O(m®n®)!
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Local

What are the necessary changes to our framework?
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The local alignment problem consists in finding a pair
of substrings o and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings.



The local alignment problem consists in finding a pair
of substrings o and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings.

Effectively, this represents a path in the edit graph

from some (i, j) to (/,) whose global alignment is
maximum; rather than a path from (0,0) to (m, n).



The local alignment problem consists in finding a pair
of substrings o and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings.

Effectively, this represents a path in the edit graph
from some (i, j) to (/,) whose global alignment is
maximum; rather than a path from (0,0) to (m, n).

The solution is surprisingly simple, it consists of adding
edges of weight 0 from (0,0) to all the other nodes of
the graph (and from all the nodes to (m, n)).



The local alignment problem consists in finding a pair
of substrings o and 3, of S; and S, respectively, whose
optimal global alignment value is maximum over all
possible pairs of substrings.

Effectively, this represents a path in the edit graph
from some (i, j) to (/,) whose global alignment is
maximum; rather than a path from (0,0) to (m, n).

The solution is surprisingly simple, it consists of adding
edges of weight 0 from (0,0) to all the other nodes of
the graph (and from all the nodes to (m, n)).

When computing the value of a cell (i, ), this means there
is one more path to consider, (0,0) to (i,j), which always
has a cost of 0.



Smith-Waterman Algorithm

There are only two differences with respect to the
Needleman-Wunsch algorithm:

1. An extra term is added to the recurrence, which allows
to reset the alignment to zero when all other possibilities
lead to a negative score, which also corresponds to
starting a new alignment;

2. The alignment can now stop anywhere, therefore we
need to search the grid for the maximum score and then
follow the traceback pointers.
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Smith & Waterman Algorithm

Base conditions,
v(,0) =0,/ € 0..n

General case,
v(i, j) = max
Solution,

v = max[v(i,j) : i < n,j< m]

= Smith & Waterman (1981) J. Mol. Biol. 147:195-197.
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Local (Smith-Waterman)

max =

- A A C C T A T A G C T
ol][ ol[ ol[ ol[ ol[ ol[ ol[ ol[ oI[ ol[ ol[ o]
ol 1C 1C 1C 1C 1C 1C 1C 1C 1C 1L
ot 1C 1C 1C 1C 1C 1C 1C 1C 1C 1t
ot 1C 1C 1C 1C 1C 1C 1C 1C 1C 1L
ol 1C 1C 1C 1C 1C 1C 1C 1C 10 1L
ot 1C 1C 1C 1C 1C 1C 1C 1C 1C 1t
ot 1C 1C 1C 1C 1C 1C 1C 1C 1C 1L
olc 1C 1C 1C 1C 1C 1C 1C 1C 1C 1L
ot 1C 1C 1C 1C 1C 1C 1C 1C 1C 1t

= AHPEQQQ |
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Local (Smith-Waterman)

max

=HEAHPEOQQQ
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Local
Remarks

= To find the optimum, v*, necessitates finding the largest
v(i, j) for all i, j, this takes O(nm);

= The score for an unfavorable local alignment should be
negative, scores derived as log likelihood ratio do meet
this requirement (more later);

= Time/space complexity, O(nm).
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-|H EIA|G|A|W|G|H|E|E
~| o] ol o|o|o|lo|lo|lolo|lolo
Plo| o| o] o] of] o] o] o] 0] 0| O
Alo| o] 0| 5] 0| 5] 0] 0] 0] 0|0
W|o| oo o2 0|3]12]4 0o
H|o|io] 2| o]0 0 1238 |2 T14T 6
Elol 2 6] 800 U 10 8|28 | 20
Alol ol s 21]13]'5/ 04 10 20| 27
Elol ol 6/13/i8 %27 4 0 4 6 %6

AWGHE
AW-HE

= BLOSUMb50 substitution score was used.
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e
--P-AW-HEAE

= Global alignment for the same input sequences.



Gaps
Gap Penalties

= More accurate models of biological sequence
alignments.

= Let's call a gap a maximal, consecutive run of insertions
(deletions) in a single string of an alignment.

= Often a single mutational event can delete or insert a
run of consecutive nucleotides (unequal cross-over, DNA
slippage, transposable elements (DNA repeats),
translocaltion, etc.), in the alignment one would like to
favor the clustering of insertions into gaps, instead of
having them dispersed along the alignment.
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Gaps
3 popular gap scoring strategies

VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTK
SLSAAQKDNVKSSWAKA---SAAWGTAGPEFFMALFDAHD

= Let g denote the length of the gap, 3 in the above
example, and v(g) the gap penalty term.

= Noticed that we no longer consider the positions
independent one from another!
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Gaps
3 popular gap scoring strategies

.. AAAAA. ..
.. A-—-AL L.

= Under the linear gap weight model, the score for this
alignment will be: the alignment score for the prefix
+5(A, A) 4+ 3 x d+ s(A, A)+ the alignment score for the
suffix, where d = —8 would be a typical value. l.e.

v(g) =g xd.
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Gaps
3 popular gap scoring strategies

.. AAAAA. ..
o A-—-AL L.

= Under the affine gap weight model, the score for this
alignment will be: the alignment score for the prefix
+s(A, A) + d+ 3 x e+ s(A, A)+ the alignment score for
the suffix, where d is the gap opening (or initiation) cost,
typical value is -12, and e is the gap extension cost,
typical value is -2. l.e. y(g) =d+ gx e. The
gap-extension, e, is usually smaller than the gap-opening,
which has for effect to concentrate gaps in small islands.
The affine gap weight model is the model which most
implementations use.
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Gaps
3 popular gap scoring strategies

.. AAAAA. ..
.. A-—-AL L.

= The general gap weight model allows for any arbitrary
function, such as v(g) = d+Ing.

= There is no consensus about the right model for gap
weights at this point, it is still a matter of debates.

= Modeling gaps using an arbitrary function raises the
time complexity of the algorithm to O(n?), however, in
the case of an affine function, we can lower this value to
O(n?) — which was the time complexity of the previous
algorithms.
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Arbitrary Gap Weights

The general recurrence equation is modified to include ~, an
arbitrary function which takes as input the length of the gap.

Initialisation,

General recurrence,

V(i = 1,j = 1) + s(S51(1), $20));
V(i,j) = maxq V(i,k)+~(—k),k=0...j—1,
V(L j) +~(i= 1), 1= O.../—l.

This increases the time complexity of the algorithm to O(n%), since
we have to find the last non-gap position k or /.
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Gaps
Affine function

= Gotoh has proposed a dynamic programming approach
that runs in O(n?) time/space.

= Opening + extension costs:
> V(ij))=VLj)+d+ex(i—])
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Gotoh (affine function)

To develop the new recurrence equations, it will help to define
three new quantities, G, E and F, each keeping track of the last
maximum score which was obtained as a result of a match or
substitution of Si(i) and Sx(j), an insertion into S; or an insertion
into S, respectively.

V(L)+y(i=h

(i-1,j-1)
+s(ij)

N EG) R

V(i,k)+y(i-k)

(G) (B) (F)

= Wi, j) = max[G(i, j), E(i, j), F(i, )]




Gotoh (affine function)

The general recurrence equation is modified to include ~, an
arbitrary function which takes as input the gap length,
Initialization,

V(i,0) = ~(i);
F0,)) =~0)-

General case,

V(i,j) = max[E(i,j), F(i.j), G(i, j)];
E(i,j) = maxo<k<j-1[V(i, k) + (= K)];
F(f,j) = maxoS/S;,l[V(/,j) + ’Y(i— /)],
G(’v./) = V(’_ 17./_ 1) + S(Sl(i)v 52(]))

This increases the time complexity of the algorithm to O(n%), since
we have to find the last non-gap position k or /.
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Affine Gap Weights Model (Gotoh)

= For the special case of the affine gap model, the time
complexity, to calculate the optimal alignment, can be
reduced to O(mn).

= They is idea is to observe that the cost for extending a
gap varies by a constant amount, e, and therefore, it is
not necessary to know the length of gap, but only the
score of the alignment that is one position shorter.
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Affine Gap Weights Model (Gotoh)

Initial conditions,
V(i,0) = E(i,0) =d+ixe
V(0,j) = F(0,)) =d+jxe
General case,
(i, j) = max[G(i, j), E(i,J), F(i, ))];

G(i,j) = V(i—1,j—= 1) + s(51(1), S2()));
E(i,j) = max[E(i,j — 1) + e, V(i,j — 1) + d + €];
F(i,j) = max[F(i— 1,j] + e, V(i— 1,j) + d + €.
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Consider filling the E(/, j) values.

The first case consists of extending an alignment that is
already ending with a dash symbol, E(i,j) = E(i,j—1) + e,
1 i

\ S () -
\ S:))

1 -1
For the second case, a new gap is created, i.e. the
character to the left of the gap is S1(/). This can occur in
two ways, either S(i) is opposed to Sy(j — 1)

1 i-1

L 1S ||-
L T [Sy-1)|| Sa)

1 =

or 51(i) is opposed to a dash,
1 i-1

L T80 |-
I SA0)
1 -1

which means that the correct term to consider is

Wi,j— 1)+ d+ e and not G(i,j— 1) + d+ e (which takes
into account only the first case).




Gaps
Summary

Molecular sequences suffer mutations and therefore
change over time.

Organisms that have diverged only recently from a
common ancestor will be more similar at the sequence
level than organisms that have diverged further back in
time.

The degree of similarity between orthologous sequences,
which perform the same function in two genomes, is
“proportional” to time the organisms have actually
diverged (not a linear relationship though).

An edit distance, which represents the minimum number
of edit operations that are necessary to transform one
sequence into the other, is a more “realistic” metric to
compare molecular sequences than k-mismatch, for
instance.
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Gaps
Summary

1. An alignment shows the degree of similarity (number
of edit operations needed to transform one string into the
other);

2. An alignment shows the regions of similarity or
dis-similarity.
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Gaps

Summary: Needleman & Wunsch (global) alignment

V(i—1,j— 1)+ s(S1(i), $2(j)).
Vi—1,j)+d,

(i, j) = max
Wi, j—1)+d.

where d is the cost of a deletion and d < 0

= Needleman & Wunsch (1970) J. Mol. Biol. 48(3):443-453.
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Gaps
Summary: Semi-global alignment

V(0,0) =0
V(i,0)=0,i=1.m
V(0,j) =0,j=1.n

V(i —1,j) +5(51() .
V(i,j) = max ¢ V(i j— 1) + s('—', S2()),
V(i—laj—1)+5 1(1), $50))-

9

Solution is,

_max - [V(m,n), V(i.n), V(. )]

= Two modifications: initialisation, consider the last row/column
to find the optimal value.
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Gaps

Summary: Smith & Waterman (local) alignment

Base conditions,
v(,0) =0,/ € 0..n

General case,
v(i, j) = max
Solution,

v = max[v(i,j) : i < n,j< m]

= Smith & Waterman (1981) J. Mol. Biol. 147:195-197.
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Availability

Some of the implementations include:
= Align from the FASTA suite:
fasta.bioch.virginia.edu

= and Needle from EMBOSS:
www.emboss.org

= BioJava, BioPerl, BioPython, etc.

Marcel Turcotte CS15126. Algorithms in bioinformatics


http://fasta.bioch.virginia.edu/
http://www.emboss.org/

Gaps
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Gaps

Pensez-y!

L'impression de ces notes n'est probablement pas nécessaire!
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