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Abstract. Comparative RNA sequence analyses have contributed re-
markably accurate predictions. The recent determination of the 30S and
50S ribosomal subunits brought more supporting evidence. Several in-
ference tools are combining free-energy minimisation and comparative
analysis to improve the quality of secondary structure predictions. Using
many input sequences should improve the accuracy, reduce the likeli-
hood that bad predictions are made, but also lower the sensitivity. To
investigate these claims, we have extended the software system Dynalign
to use three input sequences, rather than two, and tested our algorithm
with 10 tRNAs and 13 5S rRNAs. The following hypotheses were tested:
1) the use of three input sequences improves the average accuracy com-
pared to predictions based on two input sequences. Also, it should be
less likely that all three input sequences simultaneously fold into a bad
free-energy minimum compared to predictions based on two sequences,
consequently, 2) the worse prediction (minimum accuracy) for any se-
quence should be more accurate when three input sequences are used
rather than two. Finally, the consensus structure of three sequences is
probably less representative of the individual sequences. 3) Therefore,
the average coverage should be less.

1 Introduction

The repertoire of known non-protein coding RNAs (ncRNAs) is growing ra-
pidly[1]. The housekeeping roles of RNAs, such as those of the tRNA, rRNA,
RNAseP, snRNA and snoRNA, were established early. In the recent years, it has
become clear that RNAs also have important regulatory functions. Examples in-
clude microRNAs, which regulate the expression of protein genes by targeting a
complementary region of their mRNAs. MicroRNAs constitute one of the most
abundant class of regulatory molecules, and are key to many developmental
processes[2]. Several discoveries collectively demonstrate that untranslated mes-
senger RNAs can sense the level of metabolites, and modulate the expression of
certain genes accordingly. Those RNAs are referred to as RNA sensors and ribo-
switches[3, 4]. Post-transcriptional regulation of gene expression often involves
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secondary structure elements located in the untranslated regions of mRNAs[5].
Consequently, detailed knowledge of RNA secondary and tertiary structure is
essential to help understand RNA functions.

RNA secondary structure prediction methods have been thoroughly eval-
uated. In particular, Gardner and Giegerich have performed a comprehensive
evaluation of comparative RNA structure prediction methods[6]. Doshi et al. re-
viewed specifically free-energy minimisation methods that are using the nearest-
neighbour model[7]. One of their main conclusions is that free-energy minimi-
sation methods based on the nearest-neighbour model work best for shorter se-
quences, such as tRNA or 5S rRNA, for which they reported an average accuracy
for predictions of 69% and 71% respectively.

Recently, Mathews and Turner developed, and published, a software system
combining free-energy minimisation and comparative sequence analysis for find-
ing the minimum free-energy structure common to two input sequences[8]. The
computer system, called Dynalign, greatly improves the accuracy of secondary
structure predictions compared to free-energy minimisation alone.

Herein, we extend this algorithm to use three input sequences, rather than
two, and investigate the performance of the new computer program. We called
this software system eXtended-Dynalign, or X-Dynalign for short, to emphasise
its origin.

This paper is organised as follows. Section 2 outlines the algorithm. In Section
3, the main hypotheses to be empirically evaluated are laid out, the datasets
are described, and the evaluation measures are defined. Section 4 presents the
results. Section 5 concludes and discusses the results.

2 Algorithm

Dynalign is a pragmatic implementation of the algorithm proposed by Sankoff
for solving simultaneously the RNA folding and alignment problems[9]. Dynalign
is restricted to two input sequences, while the original proposal was formulated
for an arbitrary set of N input sequences. Also, Dynalign introduces a constraint
on the maximum distance between aligned nucleotides so as to reduce the execu-
tion time. This is analogous to the banding technique that is used for sequence
alignment.

X-Dynalign is a direct extension of Dynalign. It takes as input three sequences
and produces a three-way sequence alignment as well as a common secondary
structure. The objective function consists of a linear combination of the free-
energy of each sequence, given the common secondary structure, and an empirical
term for gap penalties.

∆G◦
total = ∆G◦

sequence 1 + ∆G◦
sequence 2 + ∆G◦

sequence 3 + ∆G◦
gaps

where ∆G◦
sequence i, for i ∈ {1, 2, 3}, represents the conformational free-energy

of the sequence i when folded onto the common secondary structure, according
to the nearest-neighbour model.
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Three sets of recurrence equations are defining the objective function: W,V
and W9. Equations of the form W (i, j, k, l,m, n) represent the minimum free-
energy for the optimal alignment and structure prediction of S1[i..j], S2[k..l]
and S3[m..n], when i, k and m are aligned, and j, l and n are also aligned, where
Si denotes the sequence i and Si[a..b] represents the fragment of Si comprising
the nucleotides a, a + 1 . . . b. Equations of the form V (i, j, k, l,m, n) represent
the minimum free-energy assuming that i and j, k and l, and m and n are
simultaneously aligned but also base-paired. Finally, W9(i, k,m) represents the
minimum free-energy for the prefix alignment of S1[1..i], S2[1..k] and S3[1..m]. A
detailed description of the recurrence equations can be found in [10]. The recur-
rence equations are solved using dynamic programming. The algorithm requires
O(|S1|2M4) space and O(|S1|3M6) time, where M is a constant that limits the
maximum distance between aligned nucleotides.

3 Methodology

3.1 Experiments

The following hypotheses are tested: 1) the use of three input sequences should
improve the average accuracy compared to predictions based on two input se-
quences. When three input sequences are used, the likelihood that they all three
fold into a bad free-energy minimum should be less than when two input se-
quences are used, consequently, 2) the worse prediction (minimum accuracy)
should be more accurate when three input sequences are used rather than two.
Finally, the secondary structure common to three input sequences should be less
representative of the individual sequences, consequently, 3) the average coverage
should be less. But first, we determine empirically the optimum gap penalties
for these datasets.

3.2 Datasets

Input sequences were selected such that they can be aligned optimally with a
small value of M . Obviously, this information would not be known in advance
in most cases. Also, the input sequences were filtered so that the maximum
pairwise identity was less than 90%. A total of 10 tRNA sequences from the
original paper were used. Their pairwise sequence identity varies from 27.3 to
68.8 %. The secondary structure assignments were taken from the compilation
by Sprinzl et al.[11, 12]. A set of 13 5S rRNA sequences was built using informa-
tion obtained from the Comparative RNA Web Site[13, 14, 15]. Their pairwise
sequence identity varies from 47.2 to 88.2% .

3.3 Performance Measures

We call references, the secondary structures that were obtained from the tRNA
compilation by Sprinzl and the Comparative RNA Web Site. We define as true
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positives (TP) the base pairs that are occurring in both structures, reference
and predicted, false positives (FP), the base pairs that are occurring in the
predicted structure but not in the reference one, and false negatives (FN), the
base pairs that are occurring in the reference structure but not in the predicted
one. Offsets were not allowed.

The positive predictive value (sometimes called PPV, specificity or accu-
racy) is defined as the fraction of the predicted base pairs that are also present in
the reference structure, TP/(TP+FP). The sensitivity (coverage) is defined as
the fraction of the base pairs from the reference structure that are correctly pre-
dicted, TP/(TP + FN). Finally, we also measured the Matthews Correlation
Coefficient, as defined by Gorodkin, Stricklin and Stormo[16]:√

TP
(TP + FN)

× TP
(TP + FP)

4 Results

4.1 Calibrating Gap Penalties

In [8], the optimal gap penalty was found to depend on the class of RNA; 2.0
and 0.4 Kcal/mol for the tRNA and 5S rRNA, respectively. Accordingly, we
performed two sets of experiments to measure the effect of various gap penalty
scores on PPV, sensitivity and MCC. Since these experiments are time consum-
ing, only six gap penalty scores were tested, 0.0, 0.25, 0.5, 1.0, 2.0, 4.0, and only
triples that can be aligned with a small value of M , here 5, were selected. In
all, 105 and 90 predictions were made for the tRNA and 5S rRNA, respectively.
For the experiments presented herein, we have chosen a gap penalty score of 1.0
Kcal/mol, because it corresponds to the maximum sensitivity for both datasets,
tRNA and 5S rRNA.

4.2 Comparative Analysis

We present the analysis of the tRNA data first. Nine runs, 27 predictions, were
made using X-Dynalign, while 19 runs, 38 predictions, were made using Dy-
nalign. The mean PPV, sensitivity and MCC are 96.8 ± 7.6, 94.4 ± 7.5 and
95.6 ± 7.3 for X-Dynalign, and 92.1 ± 14.6, 89.1 ± 15.7 and 90.5 ± 15.0 for Dy-
nalign. Our data represent a subset of that of Mathews and Turner, the PPV for
Dynalign measured on this subset is 5.7 percentage points higher than theirs. We
observe that the use of three sequences improves all three indices and reduces
their variance, for this particular dataset.

Table 1 presents the performance indices per sequence. Dynalign performed
well in the best case scenario. For all the sequences, it was possible to find a
pair of input sequences having a high positive predictive value. The maximum
PPV for every entry is 100, except for that of RS0380. Further analysis shows
that the structure of RS0380 (tRNAAsp Haloferax volcanii) has an extra stem
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Table 1. PPV for the tRNA dataset. The subscripts xd and d are designating X-

Dynalign and Dynalign respectively. N is the number of predictions

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved

RD0260 4 5 100 80 100 100 100.0 96.0
RD0500 4 5 76 45 100 100 82.2 80.8
RD4800 5 5 100 80 100 100 100.0 96.0
RE2140 2 4 100 100 100 100 100.0 100.0
RE6781 2 4 100 77 100 100 100.0 94.3
RF6320 4 5 95 45 100 100 96.4 89.1
RL0503 1 2 100 100 100 100 100.0 100.0
RL1141 2 3 100 70 100 100 100.0 90.3
RS0380 1 2 100 83 100 87 100.0 85.2
RS1141 2 3 100 70 100 100 100.0 90.3

in the variable loop, that X-Dynalign predicted more accurately. For 9 out of 10
experiments, the maximum sensitivity for X-Dynalign equals or exceeds that of
Dynalign.

Both algorithms are seeking to find a structure that minimises a linear com-
bination of the free-energy of each input sequence given the common structure.
Using three input sequences should have a positive impact on the worse case sce-
nario. It should be less likely that all three input sequences jointly fold into the
wrong minimum free-energy structure than with two input sequences. Our data
support this observation, for all the entries the minimum PPV for X-Dynalign
is the same or better than that of Dynalign. For 8 out of 10 sequences, the min-
imum PPV is 100, in one case, the minimum PPV is 95, and for one case the
minimum PPV is 76. The two sequences leading to the worse predictions are
RD0500 and RF6320, see Figure 1. Dynalign produces an elongated structure.
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Fig. 1. Reference (a), Dynalign (b) and X-Dynalign (c) secondary structures for the

tRNA RD0500
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Table 2. PPV for the 5S dataset

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved

AJ131594 2 3 100 91 100 100 100.0 94.5
AJ251080 6 5 88 82 90 86 90.3 84.8
D11460 6 5 87 66 87 88 87.6 79.4
K02682 8 9 63 88 100 97 89.1 92.0
M10816 3 4 90 85 90 88 90.7 87.8
M16532 1 2 94 77 94 85 94.1 81.8
M25591 6 5 87 82 90 86 89.8 84.8
V00336 3 4 75 65 100 100 91.9 91.4
X02024 9 6 88 82 90 88 90.1 85.8
X02627 1 2 100 92 100 100 100.0 96.0
X04585 2 3 72 68 94 93 83.4 82.7
X08000 5 5 90 88 90 90 90.6 89.4
X08002 5 5 90 88 90 90 90.6 89.4

However, using a third sequence increases the accuracy by more than 30 per-
centage points. The structure produced by X-Dynalign has the overall cloverleaf
shape, however, the nucleotides of the first part and second part of the D-arm
are shifted by one and two positions, respectively. The minimum coverage is
generally good. For all the sequences the coverage is 75% or better. For all the
tests the coverage for X-Dynalign is the same as Dynalign or better.

For our second test set, we have 19 runs, 57 predictions, using X-Dynalign,
and 29 runs, 58 predictions, using Dynalign. The mean PPV, sensitivity and
MCC are 90.3±5.8, 76.6±5.3 and 83.2±5.5 for X-Dynalign, and 87.7±7.4, 79.2±
6.7 and 83.3 ± 6.7 for Dynalign. For this particular dataset, the performance of
both systems is comparable on the basis of the Matthews correlation coefficient.
What is gained in accuracy is lost in sensitivity.

Table 2 presents the performance indices per sequence. Using three input
sequences improves the worse (PPV) prediction for 12 out of 13 sequences. Also,
for 10 out of 13 sequences, the minimum PPV obtained is 85% or more. The
minimum sensitivity is the same or improved for 11 out of 13 sequences. However,
the maximum sensitivity exceeds that of Dynalign for 2 out of 13 sequences.

The prediction of the 5S rRNA of Micrococcus lutus (K02682) has an accuracy
of 63% only. We believe this is due to the fact that single base pair insertion
has not been implemented yet in X-Dynalign. In the triple K02682, V00336 and
X04585, the structure of Rhodobacter capsulatus (X04585) has a shorter helix
IV, 7 base pairs compared to 8 for the other two structures.

5 Conclusion and Discussion

Wehave extended the software systemDynalign touse three input sequences, rather
than two.The resulting system is called eXtended-Dynalign (X-Dynalign for short).
Its time/space complexity limits its application to 1) short sequences (say less than
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200 nt) and 2) sequences that can be aligned optimally with a small value of M (less
than 6), where M is the maximum distance of aligned positions.

The strengths of Dynalign carry over to the new system. Namely, it improves
the accuracy of secondary structure predictions compared to predictions based
on a single input sequence. It requires no sequence homology.

It also shares some of its limitations. In particular, the gap penalties are
treated as a separate term in the objective function. The optimal value has to
be determined empirically. In [8], it was found that the optimal value for this
term depends on the class of RNA studied. In our limited experiments, the
dependency seems less important. It also seems that there is large plateau were
several gap penalty scores are leading to a nearly optimal solution; w.r.t. PPV,
for example. Our key conclusions are:

– The lowest PPV for any prediction is generally improved when using three
input sequences;

– The average accuracy is improved;
– The average sensitivity of the algorithm slightly degraded for the 5S rRNA

dataset. However, a per sequence analysis shows that the majority of the
lowest sensitivity scores are higher for X-Dyanlign than Dynalign;

– X-Dynalign is able to reproduce subtle details, such as the prediction of a
stem in the variable region of certain tRNAs.

There are several obvious directions for extending this class of algorithms,
such as handling pseudo-knots and reporting suboptimal structures. However,
one of the most urgent improvement is to reduce the time/space complexity.
Several runs presented herein take up to week to compute on some of the fastest
processors available today.

The detailed knowledge of RNA secondary structure is essential for under-
standing the sequence-structure-function relationships. X-Dynalign takes advan-
tage of the paramount of data that is accumulating in sequence databases. Be-
cause it requires no sequence homology, X-Dynalign should be useful to compar-
ative RNA sequence analyses.

6 Availability

The source code, written in C++, as well as the scripts for calculating the per-
formance indices are made available under the GNU General Public Licence from
http://bio.site.uottawa.ca/software/x-dynalign. Supplementary material,
including additional tables and figures, can be found on our web site.
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